人工智能真的来了 是谁在害怕?

   日期:2016-03-18     来源:C114中国通信网    评论:0    
核心提示:韩国著名棋手李世石九段不敌AlphaGo,不得不承认这是一件让人感到有点可怕的事情,如此强悍的AlphaGo倘若遭到坏人的恶意利用,后果岂不是很严重?

  AlphaGo火了,五场亿人围观的“人机大战”,最终它依托大数据与深度学习的技术优势以4:1的胜利者姿态告诉人们,人工智能真的来了,不再只是电影中的场景,而是现实世界里正在上演的又一轮产业变革,然而这种变革让不少人感到惶恐,一时间各种人工智能威胁人类的声音铺天盖地,据英国科学协会委托网络调研公司YouGov进行的一项调查显示,大约36%的人认为人工智能技术的兴起会对人类长期生存构成威胁。人们在各种人工智能会带来大波“失业潮”的言论中深感忧虑,同时也在如此强悍的AlphaGo会不会被恶意利用等问题上担心不已,那么真实情况到底是怎样的?我们不妨听一下业内的大咖们都持怎样的看法。

  AlphaGo被坏人利用怎么办?AlphaGo无思维能力,不必对其担忧

  韩国著名棋手李世石九段不敌AlphaGo,不得不承认这是一件让人感到有点可怕的事情,如此强悍的AlphaGo倘若遭到坏人的恶意利用,后果岂不是很严重?

  对此创新工场联合创始人汪华在惊蛰论坛中表示,这个担心其实是完全没有必要的,因为无论是自动控制机器人还是AlphaGo的技术进展都是来自于2006年、2007年在深度学习方面的一些突破,但这个东西其实不是真正的人工智能,它只能进行简单重复的模式识别,相当于脑力里面的机械运动,而在真正的所谓的人类思维方面,到目前为止连基础理论都还没有发现和突破,更何谈工程应用,因此没必要担心。此外汪华也表示,以前人类发明的工具大部分都是降低人在体力上的机械重复运动,而现在则是人类历史上第一次有可能发明出一种能降低人类在脑力方面的机械重复劳动的工具,因此他认为对于基础技术的研发不应该在它还没有真正出来的时候就做太多的道德或者价值等方面的限制与干涉。

  未来五年人工智能将导致千万人失业?是的!但更应警惕的是让人类丧失斗志

  人工智能技术的崛起将导致“失业潮”的发生已基本成为行业的共识。“世界经济论坛”2016年年会,基于对全球企业战略高管和个人的调查发布的报告称,未来五年,机器人和人工智能等技术的崛起,将导致全球15个主要国家的就业岗位减少710万个,2/3将属于办公和行政人员。莱斯大学计算机工程教授摩西·瓦迪近日同样表示,今后30年,电脑可以从事人类的所有工作,他预计,2045年的人类失业率将超过50%。

  创新工场董事长兼首席执行官李开复表示,这些强大的机器带给人类的“下岗潮”还不是最可怕的,因为这些机器会产生巨大的商业价值,养活着这些下岗者,进而养活着人类。人类最应该担心的是“人工智能”机器真正可能带来的危机,不是奴役人类,而是让人类丧失斗志,无所事事。

  人工智能只有“智商”没“情商”?已诞生情感社交机器人

  如果你认为人工智能只能完成高超的逻辑思考,而不会理解人类的情感情绪,包括喜、怒、哀、乐、爱、恨、贪、痴,那就错了。事实上,越来越精准的图像、声音和面部识别系统均能让计算机更好地探查人的情感状态。《福布斯》杂志近期刊文称,随着人工智能技术的发展,基于人工智能的设备不仅可以完成逻辑思考,还将出现类似人类的情感。

  而目前也已经出现了情感社交机器人如在北京诞生的“公子小白”,其独有的情感表达系统,能够识别人类情绪,同时能够表达自身情绪。强大的语义识别分析能力及知识库,能够更好地理解人类不同语义及语义中表达的不同情感,并通过数据分析做出最富“人性化”的回应。制造出公子小白机器人的狗尾草智能科技CEO邱楠表示“无论科技如何发展,回归人性、回归情感、重塑连接将依旧是情感机器人所需要努力的方向。”

  国内外人工智能技术差距有多大?技术本身差距不大,此外目前讨论该问题无意义

  在国外,全球互联网领域的几大巨头谷歌、微软、苹果和Facebook等都在积极进行人工智能方面的研发,那么国内的情况又是怎样的?与国外的差距又有多大?

  据中科院计算所研究员陈云霁表示“中科院和教育部的很多高校以及讯飞、百度等公司都在进行人工智能研究,且进展还是比较快的。事实上,中国在智能这样的新兴领域和国外差距不大,甚至在智能芯片上是引领世界的。例如我们的寒武纪,美国的哈佛、斯坦福、MIT、哥伦比亚等高校都跟在我们后面做。”图灵机器人创始人兼CEO俞志晨同样在有关人工智能的讨论中指出,对于人工技能技术本身,国内外差距并不是特别大。不过他表示“现在讨论技术差距没有太大意义,毕竟现在我们离真正的人工智能时代还很遥远”。《纽约时报》高级科技记者、普利策奖得主马尔科夫也同样表示从世界范围内来看,目前的人工智能还远没有达到我们想象的地步。他认为目前亟待解决的问题是制造出更好的传感器以及具备更好的算法能力。

 
标签: 人工智能
  
  
  
  
 
更多>同类资讯
0相关评论
 
全年征稿 / 资讯合作
 
 
 
推荐资讯
可能喜欢