太空中的卫星有很多种, 比如观测气象的气象卫星, 进行广播电视信号传输的通信卫星, 观测地表和浅地层情况的遥感卫星,观测海洋洋流和水温的海洋卫星,进行实时定位的北斗卫星导航定位卫星……等等,这些卫星有一个共同的特点,即数据传输是在地面和卫星之间进行的。
我第一代中继卫星天链系统建成
还有一种卫星,它除了可以进行星地通信外,还可以与其他航天器之间进行星际通信,它的主要任务,就是将一些航天器的数据接收转发,传输到地面或者其他的航天器,反之亦然。 这个信息传递的接力手,就是我们今天用的数据中继卫星。
在没有数据中继卫星之前,卫星数据要传输到地面,就要建立星地通信链路。如果卫星与地球的相对位置是固定不变的,即卫星在36000公里高的地球同步轨道上(大多数是通信广播卫星),建立这样的通信链路就相对方便。可是,绝大多数卫星都是在200-2000公里的低轨道上,比如神舟十号与天宫一号组合体,它们相对地球不停的转动,速度比地球自转快很多。一颗低轨卫星绕地球一周,只在很小的一部分运行轨迹中,能够与一个固定地面站建立稳定数据传输链路。用航天术语来说,一个地面卫星站,对一个中低轨航天器的轨道覆盖率只有大约2%-3%。
就是说,一颗低轨道卫星绕地球一圈,一个地面站只有2%-3%左右的时间,能够“看”到这颗卫星,并和它对话。要想再次和它对话,要等卫星再绕地球一圈,直至我们能“看”到它的时候。所以每次星地对话的时间很短,这样就不能进行太空授课、交流问答。
为了更加实时的掌握低轨航天器数据,就要提高轨道覆盖率。而提高轨道覆盖率,解决的办法有两类。第一类是大大增加地面卫星接收站的数量或大量建造远洋测量船(如“远望”系列测量船),这样做未免太浪费,那是相当的烧钱啊;第二类办法,就是在太空建立数据中继卫星。
原理是这样的:如果在36000公里的地球同步轨道,均匀部署3颗数据中继卫星,假设为ABC三星。那么,我们就可以实现2个目标。
1 无论低轨道卫星在什么位置运行,在它的上方,至少都被ABC中的某一颗中继卫星覆盖。
2 无论一个国家的地面站在地球的什么位置,在它的上方,至少都被一颗固定的中继卫星覆盖,假设为C星。
那么,当低轨道卫星被C星覆盖时,就随时可以将自己的数据通过C星转发本国地面站(当然也可以直接将数据发往地面站而不经过C星转发)。而当低轨道卫星被A或B星覆盖时,就随时可以将自己的数据发给A或B星,A/B星可以将数据接力发给C星,再通过C星与本国地面站的链路传输给地面。
简单说,理论上,一颗地球同步轨道上的数据中继卫星,轨道覆盖率就可以达到50%,三颗就可以实现100%的覆盖率。知道这个就行了。
中继卫星的核心优势是:实时全程测控、实时全程传输、降低测控成本
实时全程测控:中继卫星可以大幅提升航天器(如宇宙飞船、太空实验室、火箭、卫星)的测控覆盖率接近100%。增强了空间交会对接任务实施的安全性和可靠性,为实施手控交会对接、开展空间科学实验等提供了稳妥高效的天基测控通信保障。
实时全程传输:中继卫星作为在太空中运行的数据“中转站”,能使资源卫星、环境卫星等数据实时下传,极大提升各类卫星使用效益和应急能力,同时降低测控成本:最少只要3颗卫星,就可以进行全球中继卫星组网。如果中继卫星的功能足够先进,则可以替代大批地面卫星测控站和远洋测量船,经济效益是非常可观的。于是中国第一代数据中继卫星——“天链一号”,终于登场了。
2008年4月25日23时35分,首星“天链一号01星”,在西昌卫星发射中心由“长征三号丙”运载火箭发射,成功应用于神舟七号载人航天飞行任务,将“神舟”飞船的测控覆盖率从12%提高到40%以上。
2011年7月11日23时41分,中国在西昌卫星发射中心用“长征三号丙”运载火箭,将“天链一号02星”送入太空,神州飞船测控的轨道覆盖率提高到70%以上。2012年6月16日晚,当“神舟九号”飞船运行至第2圈,测控人员遥控天链01/02两颗中继卫星对飞船实施捕获跟踪,建立了星间双向通信链路。卫星传回了飞船轨道舱的实时画面。大屏幕上,3名航天员的一举一动、一颦一笑清晰展现。
01和02星的出场,看起来好像只是为了神舟和天宫系列飞行器测控做铺垫,在这场航天大戏中,天链传输卫星像一个接力手,更像是一个跑龙套的串场角色,而且还是一个近乎于在后台的龙套——在中国宇航员和神州飞船的耀眼光芒下,天链卫星的故事很少有人知道。在几个小时的神州飞船发射电视直播节目中,只有卫星管控总调度员的三句口令——“天路跟踪准备正常,星间天线回扫开始!”、“ 01星成功捕获神舟九号!前返向链路已建立!”、“ 02星成功捕获神舟九号!前返向链路已建立!”,让我们隐约的看到了天链划过天际的一丝身影。
2012年7月25日天链一号03升空
神九返回落幕之后大约1个月后,即2012年7月25日, 天链一号03星在西昌卫星发射中心成功发射。经过一段时间在轨验证和系统联调后,03星与01星、02星实现了全球组网运行,中国由此正式建成第一代中继卫星系统,并在航天领域愈来愈显现出其独特而深远的作用。
我第一代中继卫星系统建成
最近,在央视对神十发射的直播中,屏幕右上角常会出现"天链"字眼,这是表示当时的视频信号来自"天链一号"数据中继卫星的转发。而"滨海"、"南亚"、"喀什"和"远望"等字眼则分别表示东非肯尼亚的马林迪测控站、南亚巴基斯坦的卡拉奇测控站、中国新疆的喀什测控站和海上的远望系列测控船。
与普通通信卫星相比,数据中继卫星需要克服的第一个技术难题是对航天器的捕获和跟踪。中继卫星运行高度是36000公里,低轨航天器的高度仅为数百公里,距离非常远;而视频、高质量静态图像又需要高速数据传输,中继卫星与低轨航天器之间需要采用增益高、波束极窄的Ku/Ka波段天线进行通讯。通讯距离远、通讯波束窄,这就对跟踪精度提出了极高要求,要达到0.06度。
中继卫星为了与众多中低轨道卫星通信,天线处于复杂的变速运动状态,在转动速度、加速度和角度上都没有规律,天线的机械驱动机构不仅要精度高,而且要求在恶劣工作环境下长时间稳定运行,制造难度很大。同样麻烦的还有天线与卫星的振动耦合问题,非线性结构的天线不规律的运动和振动,对卫星本体姿态控制也有很复杂的影响,对卫星控制也提出了很大的挑战。而天线制造本身也是一个难题,高数据传输速率要求高增益天线,通俗地说,中继卫星的抛物面通信天线尺寸要尽可能的大。同时,Ku/Ka波段波长小,对天线抛物面精度要求也非常高。数米直径的抛物面天线整体形面误差要低于0.1毫米,并且要在外太空高温差条件下长期保持这样的精度,其难度可想而知。
所以,数据中继卫星可以称得上是当今技术含量最高的通讯卫星。我国在去年完成第一代"天链一号"数据中继卫星体系的建设,进行“太空授课”实则是对自己航天测控实力的一次展示。