

Hardware

Software

Workshop

自由口通信

S7-200 自由口通信

S7-200

Hardware

Software

Workshop

概述

提纲

•

- 设置说明
 - 工作模式定义
 - XMT 指令
 - RCV 指令

• 编程示例

- 自由口发送示例
- 自由口接收示例

Hardware

Software

Workshop

概述

- S7-200 CPU 具有自由口通信能力。
 - 自由口通信是一种基于 RS485 硬件基础上,允许应用程序控制 S7-200 CPU 的通信端口、以实现一些自定义通信协议的通信方式。
- S7-200 CPU 处于自由口通信模式时,通信功能完全由用户程序控制,所有的通信任务和信息定义均需由用户编程实现。
- 借助自由口通信模式, S7-200 CPU 可与许多通信协议公开的其他设备、控制器进行通信,其波特率为1200~115200bit/s。

Η	ardware	

Software

Workshop

• 补充说明:

概述

•

- (1) 由于 S7-200 CPU 通信端口是半双工通信口,所以发送和接受不能同时进行。
- (2) S7-200 CPU 通信口处于自由口模式下时,该通信口不能同时工作在其他通信模式下。如不能端口1在进行自由口通信时,又使用端口1进行 PPI 编程。
- (3) S7-200 CPU 通信端口是 RS485 标准,因此如果通信对象是 RS232 设备,则需要使用 RS232/PPI 电缆。
- (4)自由口通信只有在 S7-200 CPU 处于 RUN 模式下才能被激活, 如果将 S7-200 CPU 设置为 STOP 模式,则通信端口将根据 S7-200 CPU 系统块中的配置转换到 PPI 协议。

S7-200 自由口通信

S7-200

Hardware

Software

Workshop

• 概述

提纲

- 设置说明
 - 工作模式定义
 - XMT 指令
 - RCV 指令

• 编程示例

- 自由口发送示例
- 自由口接收示例

Hardware

Software

Workshop

• 工作模式定义

・ XMT 指令

・ RCV 指令

工作模式定义

•

S7-200

Hardware Software

Workshop

- 使用自由口通信前,必须了解自由口通信工作模式的定义方法,即控制字的组态。
- S7-200 CPU 的自由口通信的数据字节格式必须含有一个起始位、一 个停止位,数据位长度为7位或8位,校验位和校验类型(奇、偶校验) 可选。
- S7-200 CPU 的自由口通信定义方法为将自由口通信操作数传入特殊 寄存器 SMB30(端口0)和 SMB130(端口1)进行端口定义,自由 口通信操作数定义如下所示:

Hardware Software

Workshop

工作模式定义

MSB LSB 7 0 Μ p đ ь ъ ь р m pp: 校验类型选择 00= 不校验 01= 偶校验 10= 不校验 11= 奇校验 d: 每字符数据位长度 0= 8位 1= 7位 bbb: 自由口通信波特率(bit/s)。注意: 57600bit/s 和 115200bit/s 波特率仅有 1.2 版以上的 S7-200 CPU 支持。 000= 38400 001 = 19200010=9600 011=4800 100=2400 101=1200 110=115200 111= 57600 mm: 协议选择。默认设置为 PPI 从站模式。 00= PPI 从站模式 01= 自由口模式 10= PPI 主站模式 11= 保留

Hardware

Software

Workshop

• 工作模式定义

・ XMT 指令

・ RCV 指令

- Hardware Software
- Workshop

- 自由口通信模式主要使用 XMT (发送)和 RCV (接收)两条指令, 以及相应的特殊寄存器。
- XMT 指令利用数据缓冲区指定要发送的字符,用于向指定通信口以字 节为单位发送一串数据字符,一次最多发送255个字节。
- XMT 指令完成后,会产生一个中断事件(Port 0为中断事件9, Port1为中断事件26)。
- XMT 指令的缓冲区格式如下表所示:

XMT 指令

٠

T+0	发送字节个数
T+1	数据字节
T+2	数据字节
T+3	数据字节
T+255	数据字节

Hardware

Software

Workshop

• 工作模式定义

・ XMT 指令

・ RCV 指令

Hardware
Software

Workshop

- RCV 指令可以从 S7-200 CPU 的通信口接收一个或多个数据字节,接 收到的数据字节将被保存在接收数据缓冲区内。
- RCV 指令完成后,会产生一个中断事件(Port 0为中断事件23, Port1 为中断事件24)。特殊寄存器 SMB86 和 SMB186 则分别提供 Port0 和 Port1 的接收信息状态字节。
- RCV 指令的缓冲区格式如下表所示:

RCV 指令

•

T+0	接收字节个数
T+1	起始字符 (如果有)
T+2	数据字节
T+3	数据字节
T+255	结束字节 (如果有)

S7-200 自由口通信

S7-200

Hardware

Software

Workshop

• 概述

提纲

- 设置说明
 - 工作模式定义
 - XMT 指令
 - RCV 指令

• 编程示例

- 自由口发送示例
- 自由口接收示例

•

S7-200

Hardware

Software

Workshop

- 自由口发送示例
 - 概述PLC 程序说明
 - 超级终端接收组态
- 自由口接收示例
 - 概述
 - PLC 程序说明
 - 超级终端发送组态

自由口发送示例

S7-200

Hardware

Software

Workshop

- PLC 程序说明
- 超级终端接收组态

Hardware

Software

Workshop

- 记录定时中断次数,将计数值转化为ASCII字符串,再通过 CPU224XP 的 Port0 发送到计算机串口,计算机接受并利用超级终端 显示与 S7-200 CPU 通信的内容。
- **2**硬件需求

1 功能要求

概述

•

•

• 带串口的 PC 机、S7-200 CPU 224XP、RS 232 电缆(推荐采用西门子 S7-200 串口编程电缆)

自由口发送示例

S7-200

Hardware
Software
Workshop

3 简要实现步骤

•

- (1)编写 S7-200 PLC 程序。
- (2)下载程序到 S7-200 PLC 中。
- (3) 配置计算机的超级终端。
- (4)使用计算机上超级终端接收并显示与 S7-200 CPU 通信的通信 内容。

自由口发送示例

S7-200

Hardware

Software

Workshop

- PLC 程序说明
- 超级终端接收组态

٠

Hardware

Software

Workshop

1 规定缓冲区为 VB100 到 VB114 ,使用数据块进行缓冲区定义。

地址	存储数据	说明
VB100	14	发送字节数
VB101~VB112	数据字节	数据字节
VB113	16#0D	消息结束字符
VB114	16#0A	回车符

- 在Step7-Micro/Win 中组态数据块,如下图所示。
- 16#0D和16#0A用于计算机的超级终端显示需要。

PLC 程序说明

S7-200

Hardware Software Workshop

• 2 程序结构及用途

- 主程序:根据 | 0.3 状态初始化端口1为自由口通信
- SBR_0: 定义端口0为自由口,初始化定时中断
- SBR_1: 定义端口0为普通 PPI 从站通信口
- INT_0: 对定时中断计数并从端口0发送计数值

Hardware Software Workshop

Hardware Software Workshop SIEMENS 2)SBR_0 编程

Hardware

Software

Workshop

3)SBR_1 编程

PLC 程序说明

and for

S7-200

Hardware Software Workshop

4) INT_(0 编程
----------	------

.

补充说明:中断事件10是由中断0产生的时间中断,该时间中断的间隔的范围为1ms~255ms,中断间隔的数值由 SMB34 定义。由于RS232传输线由空闲状态切换到接收模式需要切换时间(一般为0.15~14ms),故为防止传送失败,设置的中断间隔必须大于切换时间,并再增加一些富余。

自由口发送示例

S7-200

Hardware

Software

Workshop

- PLC 程序说明
- 超级终端接收组态

•

Hardware Software Workshop

- 超级终端(Hyper Terminal)是 Windows 操作系统提供的通信测试 程序,本例程用它来监测计算机和 S7-200 CPU 之间的串口通信。超 级终端和 Step7 Micro/Win 这类应用程序进行串口操作时都会占用计 算机串口的控制权,所有不能同时进行对同一个串口进行操作。
- 超级终端组态步骤如下:
- 1 执行 Windows 菜单命令"开始">"附件">"通信">"超级终端",为要 新建的连接输入连接名称。

超级终端接收组态

2选择连接时要使用的串口。

S7-200

Hardware
Software
Workshop
SIEMENS
STEIVIENS

连接到	? 🗙
冬 夏 自由口通信	Test
输入待拨电话的详	細信息:
国家(地区)(C):	中华人民共和国(86)
区号(图):	10
电话号码(2):	
连接时使用(图):	COM1
	确定 取消

超级终端接收组态

S7-200

Software Workshop	Hardware
Workshop	Software
	Workshop
SIEMENS	SIEMENS

• 3 设置串口通信参数并保存连接,注意此处设置要与PLC程序中对应。

0Ⅲ1 属性		? 🛽
端口设置		
毎秒位数(B):	9600	~
数据位 (D):	8	~
奇偶校验(P):	无	¥
停止位 (S):	1	~
数据流控制 (E):	无	~
L	逐	原为默认值 (28)
	确定 即	2消 应用 (&)

超级终端接收组态

S7-200

Hardware
Software
Workshop
SIEMENS

• 4 设置串口通信参数并保存连接,注意此处设置要与PLC程序中对应。

COIII 属性		? 🛛
端口设置		
毎秒位数 (B):	9600	
数据位 @):	8	×
奇偶校验 (P):	无	•
停止位 (<u>S</u>):	1	•
数据流控制(2):	无	~
	〔还原为	默认值 ®)
	确定 取消	_ 应用 (4)

٠

•

Hardware

Software

Workshop

- 5 使用超级终端接收 S7-200 CPU 发送的信息。
- 将I 0.3 置为ON,单击按钮进行连接,超级终端的窗口会自动显示 S7-200 CPU 发送的字符串。

自由口源信Test - A	B板终端 📰	
2件(2) 編得(2) 査者(2)) 野叫 ② 有法 ② 都勒 ②	
) 🖨 👘 🖏 🛍 🎦	<i>a</i>	
350		1
951		
352		
353		
354		
355		
356		
337		
359		
360		
361		
362		
363		
365		
366		
367		
368		
369		
370		
372		
373		
連接 0:19:57 AMSTW	9600 8-18-1 SCIALL CAPE 100 19 27-9	

•

S7-200

Hardware

Software

Workshop

- 自由口发送示例
 - 概述
 - PLC 程序说明
 - 超级终端接收组态
- 自由口接收示例
 概述
 - PLC 程序说明
 - 超级终端发送组态

自由口接收示例

S7-200

Hardware

Software

Workshop

- PLC 程序说明
- 超级终端发送组态

1 功能要求 •

•

概述

Hardware

Software

S7-200

Workshop

- S7-200 CPU 从端口0接收计算机发送的字符串,并在信息接收中断服 务程序中把接收到的第一个字节传送到 CPU 输出字节QB0 上显示。
- 2 硬件需求 •
- 与"自由口发送"相同。 •
- 3 简要实现步骤 •
- (1) 编写S7-200 PLC程序。 •
- (2)下载程序到S7-200 PLC中。 •
- (3) 配置计算机的超级终端。 •
- (4) 使用计算机上超级终端发送信息,并通过状态表查看S7-200 • CPU接收到的通信内容。

自由口接收示例

S7-200

Hardware

Software

Workshop

- PLC 程序说明
- 超级终端发送组态

PLC 程序说明

S7-200

Hardware Software Workshop

• 1 程序结构及用途

- 主程序: 根据I 0.3 状态初始化端口1为自由口通信
- SBR_0: 定义端口0为自由口,初始化接收指令
- SBR_1: 定义端口0为普通 PPI 从站通信口
- INT_0: 在 QB0 输出接收到的第一个字节

Hardware

Software

Workshop

1) 主程序编程

•

PLC 程序说明

Hardware Software

Workshop

• 4) INT_0 编程

自由口接收示例

S7-200

Hardware

Software

Workshop

概述

- PLC 程序说明
- 超级终端发送组态

超级终端发送组态

1 配置超级终端链接

٠

٠

S7-200

Hardware Software Workshop

(1) 打开刚才建立好的超级终端链接,进入该链接的属性窗口。

数到 改重 功能键、箭头键和	コ Ctrl 键用作
Backspace 键发送 ③ Ctrl+H(C) 〇	É Del (D) ◯ Ctrl+H, Space, Ctrl+H
端仿真(2): 3和检测	😺 終端设署 (S)
lnet 终端 ID(M): 卷缓冲区行数(B):	ANSI

٠

Hardware Software Workshop SIEMENS (2) 点击 "ASCII 码设置" 按钮, 在弹出的 ASCII 码设置窗口中, 按下图方式进行设置。

ASCII 码设置		? 🛛				
ASCII 码发送						
 ☑ 以換行符作为发送行末尾(S) ☑ 本地回显键入的字符(B) 						
行延迟(L):	0	毫秒。				
字符延迟 (C):	0	毫秒。				
ASCII 码接收 □ 将换行符附加到传入行末尾(A) □ 将传入的数据转换为 7 位的 ASCII 码(P) ☑ 将超过终端宽度的行自动换行(W)						

43

超级终端发送组态

• 2 接收超级终端发送的信息

٠

٠

- (1)把 PLC 转换到运行状态,同时把 I 0.3 置为ON。
- (2) 在超级终端中输入字符串。

超级终端发送组态

S7-200

٠

Hardware

Software

Workshop

(3)在 Step-Micro/Win32 中使用状态图,监测缓冲区和 QB0 内容。

-	状态表				🛛			
	· 3 · 1 · 4 · 1 · 5 · 1 · 6 · 1 · 7 · 1 · 8 · 1 · 9 · 1 · 10 · 1 · 11 · 1 · 12 · 1 · 13 · 1 · 14 · 1 · 15 · 1 · 16 · 1 · 17 · 1 · 18 · · · 19 · 1 · 2							
	地址	格式	当前值	新值	-			
1	QBO	ASCII	'U'					
2	VB100	无符号	0					
3	VB101	ASCII	'U'					
4	VB102	ASCII	- Th					
5	VB103	ASCII	'O'					
6	VB104	ASCII	'P'					
7	VB105	十六进制	16#0D					
8	VB106	十六进制	16#0A					
14	∢ ▶ ▶ \用户定义	.1/						

