S7-1200 PWM 功能简介

PWM of S7-1200

Getting Started

Edition (2010年01月)

摘 要 本文简单介绍了 S7-1200PWM 功能

关键词 S7-1200,脉宽可调

Key Words S7-1200, PWM

目 录	
S7-1200 PWM功能简介	. 1
1 PWM功能简介	4
2 PWM功能组态	4
3 PWM指令块	6
4 应用举例	7
1 硬件组态	7
2 建立变量	9
3 程序编制	9
4 监控	9
附录一推荐网址	11

1 PWM 功能简介

PWM(脉冲宽度可调)是一种周期固定,脉宽可调节的脉冲输出,如图 1 示,PWM 功能 虽然使用的是数字量输出,但其在很多方面类似于模拟量,比如它可以控制电机的转速,阀 门的位置等。S7-1200 CPU 提供了两个输出通道用于高速脉冲输出,分别可组态为 PTO 或 PWM,PTO 的功能只能由运动控制指令来实现,PWM 功能使用 CTRL_PWM 指令块实现, 当一个通道被组态为 PWM 时,将不能使用 PTO 功能,反之亦然。

图 1 所示为 PWM 原理

1 脉冲周期 2 脉冲宽度 图 1 PWM 原理

脉冲宽度可表示为脉冲周期的百分之几(0-100%),千分之几(0-1000),万分之几 (0-10000)或 S7 analog(模拟量)形式, 脉宽的范围可从 0(无脉冲,数字量输出为 0)到全脉冲周期(无脉冲,数字量输出为 1)。

2 PWM 功能组态

CPU的两路脉冲发生器,使用特定的输出点,如图2所示,用户可使用 CPU 集成输出 点或信号板的输出点,表中所示为默认情况下的地址分配,用户也可自己更改输出地址,无 论点的地址如何变化,PTO1/PWM1 总是使用第一组输出,PTO2/PWM2 使用紧接着的一组 输出,对于 CPU 集成点和信号板上的点都是如此。PTO 在使用脉冲输出时一般占用 2 个输 出点,而 PWM 只使用一个点,另个没有使用的点可用作其它功能。

Description	Default output assignment	Pulse	Direction
PTO 1	Onboard CPU	Q0.0	Q0.1
	Signal board	Q4.0	Q4.1
PWM 1	Onboard CPU	Q0.0	
	Signal board	Q4.0	
PTO 2	Onboard CPU	Q0.2	Q0.3
	Signal board	Q4.2	Q4.3
PWM 2	Onboard CPU	Q0.2	
	Signal board	Q4.2	

脉冲功能输出点占用如图 2

图2脉冲功能输出点占用

组态步骤

 进入 Device Configuration(设备组态)界面,选中 CPU,点击属性,选中 Pulse Generator(PTO/PWM)。如图 3

图 3 进入设备组态

2. 组态脉冲发生器参数,如图 4。

Parameter assignment		
Pulse options		
Pulse generator used as:	PWM 💌	2
Output source:	Onboard CPU output 🔹 👻	3
Time base:	Milliseconds 🗸 🗸	
Pulse width format:	Hundredths 🗸	4
5 Cycle time:	100	ms
6 Initial pulse width:	50	Hundredths

图 4 脉冲发生器组态

1 Pulse generator used as (脉冲输出类型):用于选择 PTO 或 PWM 输出。

2 Output source(输出源):选择是 CPU 集成点输出或信号板输出。

3 Time Based (时基): Milliseconds (毫秒), Microseconds (微秒)

4 Pulse width format(脉宽形式):Hundredths(百分比),Thousandths(千分比),ten

thousandths(万分比),S7 analog format(S7 模拟量)。

5 Cycle time (周期): 脉冲的周期值只能在此修改。

6 Intial pulse width(初始脉宽)。

IA&DT Service & Support

图 5 所示为系统指定的硬件输出点 Hardware outputs	< → 脉冲占用的输出点
图 5 PWM 硬件输出点	
图 6 为 PWM 所分地址	
IO addresses/HW identifier	
Output addresses	
Start address:	1000 - 1
End address:	1001
Process image:	Cyclic Pl 🗾 2
Hardware identifier	
HW ID:	7 3

图 6 PWM 脉宽调制地址

1 Start address(起始地址):此地址为 WORD 类型,用于存放脉宽值,用户可在系统运行中实时修改此值达到修改脉宽的目的,默认情况下,PWM1使用 QW1000,PWM2使用 QW1002。

2 Process Image(过程映像区):由于脉宽值存放地址为过程映像区,这里选择更新 方式,默认为周期更新。

3 HW ID (硬件识别号)。

3 PWM 指令块

S7-1200 CPU 使用 CTRL_PWM 指令块实现 PWM 输出,如图 7.在使用此指令块时需要 添加背景数据块,用于存储参数信息。

图 7 PWM 指令块

PWM 指令块参数如表 1				
参数	数据类型	描述		
PWM	WORD	填写硬件识别号,即组态参		
		数中的 HW ID		
Enbale	BOOL	1= 使能指令块		
		0= 禁止指令块		
Busy	BOOL	功能应用中		
Status	WORD	状态显示		

表 1 PWM 指令块参数

当 EN 端变为 1 时,指令块通过 Enable 端使能或禁止脉冲输出,脉冲宽度通过组态好的 QW 来调节,当 CTRL_PWM 指令块正在运行时,BUSY 位将一直为 0。

有错误发生时 ENO 端输出为 0,同时 STATUS 显示错误状态,如图 2

Status 值	描述
0	无错误
80A1	硬件识别号(HW ID)非法

表2错误状态

4 应用举例

使用模拟量控制数字量输出,当模拟量值发生变换时,CPU输出的脉冲宽度随之改变, 但周期不变,可用于控制脉冲方式的加热设备。此应用通过 PWM 功能实现,脉冲周期为 1S,模拟量值在 0-27648 之间变化。

1 硬件组态

在硬件组态中定义相关输出点,并进行参数组态,双击硬件组态选中 CPU 定义 IW64 为模拟量输入,输入信号为 0-10V DC。

PWM 参数组态如下

图 8 所示为硬件参数组态						
General						
Enable _ 使能						
✓ Enable this pulse generator for use						
Project information						
Name: Pulse 1						
Comment:						
contract.	*					
Parameter assignment						
Pulse options						
Pulse generator used as:	PWM	•				
时基毫秒 Output source:	Onboard CPU output	Ŧ				
Time base:	Milliseconds	•				
周期 1S Pulse width format:	S7 analog format	模拟量类型				
Cycle time:	1000	ms				
初始值 0Initial pulse width:	0	S7 analog format				
团内压供会料加大						
图 8 硬件参数组态 图 9 所示为硬件输出点与脉宽地址定义						
Hardware outputs						
	脉冲输出点					
Pulse output: Q0.0						
IO addresses/HW identifier						
脉宽	值存放地址					
Output addresses	1					
Start address:	1000					
End address:	1001					
Process image:	Cyclic PI 👻					
7面						
Hardware identifier						
HW ID:	7					
0 硬件输出占与脉密抽扯						

图 9 硬件输出点与脉宽地址

2 建立变量

在变量表中建好变量,如图 10

	Name	Data type	Address
-	PWM_Enable	Bool	%M10.0
-	PWM_Busy	Bool	%M10.1
-	PWM_Status	Word	%MW12
-	Analog_input	Word	%IW64
-	Pules width	Word	%QW1000

图 10 PWM 示例建立变量

3程序编制

在定义完变量后,打开 OB1,从指令列表中将 CTRL_PWM 指令块拖入编辑器中,并定 义背景数据块,最后添加模拟量赋值程序。如图 11

图 11 PWM 示例程序编制

4 监控

在状态表中监控变量如图 12,使能 PWM_Enable,通过外部模拟电位计,改变输入电压 "Analog_input"值,脉冲以 1S 的固定周期,脉宽随 "Pulse Width"变化。

Name	Address	Display format	Monitor value	Modify value	9	
"PWM_Enable"	%M10.0	Bool	TRUE	TRUE		Δ
"PWM_Busy"	%M10.1	Bool	FALSE			
"PWM_Status"	%MW12	Hex	0000			
"Pules width"	%QW1000	DEC_signed	3099			
"Analog_input"	%IW64	DEC_signed	3099			

图 12 PWM 示例监控变量

如果您对该文档有任何建议,请将您的宝贵建议提交至<u>下载中心留言板</u>。 该文档文档编号: **A0425**

附录一推荐网址

自动化系统

西门子(中国)有限公司 工业自动化与驱动技术集团 客户服务与支持中心 网站首页:<u>www.4008104288.com.cn</u> 自动化系统**下载中心:** <u>http://www.ad.siemens.com.cn/download/DocList.aspx?TypeId=0&CatFirst=1</u> 自动化系统 **全球技术资源:** <u>http://support.automation.siemens.com/CN/view/zh/10805045/130000</u> "**找答案**"自动化系统版区: <u>http://www.ad.siemens.com.cn/service/answer/category.asp?cid=1027</u>

注意事项

应用示例与所示电路、设备及任何可能结果没有必然联系,并不完全相关。应用示例不表示 客户的具体解决方案。它们仅对典型应用提供支持。用户负责确保所述产品的正确使用。这 些应用示例不能免除用户在确保安全、专业使用、安装、操作和维护设备方面的责任。当使 用这些应用示例时,应意识到西门子不对在所述责任条款范围之外的任何损坏/索赔承担责 任。我们保留随时修改这些应用示例的权利,恕不另行通知。如果这些应用示例与其它西门 子出版物(例如,目录)给出的建议不同,则以其它文档的内容为准。

声明

我们已核对过本手册的内容与所描述的硬件和软件相符。由于差错难以完全避免,我们不能 保证完全一致。我们会经常对手册中的数据进行检查,并在后续的版本中进行必要的更正。 欢迎您提出宝贵意见。

版权©西门子(中国)有限公司 2001-2008 版权保留

复制、传播或者使用该文件或文件内容必须经过权利人书面明确同意。侵权者将承担权利人的全部损失。权利人保留一切权利,包括复制、发行,以及改编、汇编的权利。

西门子 (中国) 有限公司