



# 6.144Gb/s BIDI SFP+ transceiver

# RTXM228-661/662

### Features

- Compliant to SFP+ MSA
- Up to 6.144Gbps data rate
- Transmission distance up to 15km
- Fully RoHS Compliant
- Single LC receptacle optical interface compliant
- Single +3.3V power supply
- Hot pluggable 20pin connector
- Low power consumption <1.2W
- -40°C to 85°C operating wide

temperature range

- Digital Monitoring SFF-8472 Rev
  10 compliant
- Real time monitoring of: Transmitted optical power Received optical power Laser bias current Temperature Supply voltage



# Application

- Wireless and cellular base station system interconnect: OBSAI rates 3.072 Gb/s, 6.144Gb/s CPRI rates 2.4576 Gb/s, 4.9152Gb/s, 6.144Gb/s
- 2G/4G FC Data Storage

### Standards

- SFF-8431 Rev 2.0
- SFF-8472 Rev 10.2

## **Absolute Maximum Ratings**

| Parameter                 | Symbol | Unit | Min  | Max |
|---------------------------|--------|------|------|-----|
| Storage Temperature Range | Ts     | Oo   | -40  | +85 |
| Relative Humidity         | RH     | %    | 5    | 95  |
| Power Supply Voltage      | Vcc    | V    | -0.3 | +4  |

### **Recommended Operating Conditions**

| Parameter                        | Symbol | Unit | Min    | Тур | Мах               |
|----------------------------------|--------|------|--------|-----|-------------------|
| Operating Case Temperature Range | Тс     | °C   | -40    |     | 85                |
| Power Supply Voltage             | Vcc    | V    | 3.13   | 3.3 | 3.46              |
| Bit Rate                         | BR     | Gb/s | 2.4576 |     | 6.144             |
| Bit Error Ratio                  | BER    |      |        |     | 10 <sup>-12</sup> |
| Max Supported Link Length        | L      | Km   |        |     | 15                |

### Electrical Characteristics (Tc= -40~85°C and Vcc= 3.14 to 3.46)

| Parameter                     | Symbol           | Unit  | Min             | Тур | Max                  | Notes |
|-------------------------------|------------------|-------|-----------------|-----|----------------------|-------|
| Supply Voltage                | V <sub>CC</sub>  | V     | 3.14            | 3.3 | 3.46                 |       |
| Supply Current                | Icc              | mA    |                 |     | 345                  |       |
| Power Consumption             | Pc               | W     |                 |     | 1.2                  |       |
| Transmitter                   |                  |       |                 |     |                      |       |
| Input Differential Impedance  | R <sub>IN</sub>  | Ω     | 80              | 100 | 120                  |       |
| Differential Data Input Swing | V <sub>IN</sub>  | mVp-p | 180             |     | 700                  |       |
| Transmit Disable Voltage      | V <sub>DIS</sub> | V     | 2               |     | V <sub>CCHOST</sub>  |       |
| Transmit Enable Voltage       | V <sub>EN</sub>  | V     | $V_{\text{EE}}$ |     | V <sub>EE</sub> +0.8 |       |
| Transmit Fault Assert Voltage | V <sub>FA</sub>  | V     | 2.2             |     | V <sub>CCHOST</sub>  |       |



| Transmit Fault De-Assert Voltage | $V_{FDA}$          | V     | $V_{\text{EE}}$ | V <sub>EE</sub> +0.4 |  |  |  |
|----------------------------------|--------------------|-------|-----------------|----------------------|--|--|--|
| Receiver                         |                    |       |                 |                      |  |  |  |
| Differential Data Output Swing   | V <sub>OD</sub>    | mVp-p | 450             | 600 850              |  |  |  |
| Output Rise Time                 | t <sub>RISE</sub>  | pS    |                 | 60                   |  |  |  |
| Output Fall Time                 | t <sub>FALL</sub>  | pS    |                 | 60                   |  |  |  |
| LOS Fault                        | $V_{\text{LOSFT}}$ | V     | 2               | V <sub>CCHOST</sub>  |  |  |  |
| LOS Normal                       | $V_{\text{LOSNR}}$ | V     | $V_{\text{EE}}$ | V <sub>EE</sub> +0.8 |  |  |  |

# **Optical Characteristics** (*Tc* = -40~85°C and *Vcc* = 3.14 to 3.46)

| Parameter                    | Symbol              | Unit  | Min  | Тур | Max   | Notes |
|------------------------------|---------------------|-------|------|-----|-------|-------|
|                              | Transmit            | ter   |      |     |       |       |
| Average output power         | Po                  | dBm   | -8.4 |     | +0.5  | 1     |
| Contor Wayalangth            | λς                  |       | 1263 |     | 1277  |       |
| Center Wavelength            |                     | nm    | 1323 |     | 1337  |       |
| Extinction Ratio             | EX                  | dB    | 3.5  |     |       |       |
| Spectral Width (-20dB)       | Δλ                  | nm    |      |     | 1     | 3     |
| SMSR                         |                     | dB    | 30   |     |       |       |
| Relative Intensity Noise     | RIN                 | dB/Hz |      |     | -128  |       |
| Laser Off Power              | P <sub>OFF</sub>    | dBm   |      |     | -35   |       |
| Link Power Budget            |                     | dB    |      | 9.4 |       | 4,5   |
|                              | Receive             | r     |      |     |       |       |
| Contor Wayalangth            | λς                  |       | 1263 |     | 1277  |       |
| Center Wavelength            | λC                  | nm    | 1323 |     | 1337  |       |
| Receiver Sensitivity (OMA)   | R <sub>SENSE1</sub> | dBm   |      |     | -13.8 | 2     |
| Overload Input Optical Power | Pover               | dBm   | +0.5 |     |       | 2     |
| Receiver Reflectance         | R <sub>REFL</sub>   | dB    |      |     | -12   |       |
| LOS Assert LOS               | LOSD                | dBm   | -30  |     |       |       |
| LOS De-Assert LOS            | LOS <sub>A</sub>    | dBm   |      |     | -15   |       |
| LOS Hysteresis               |                     | dB    | 0.5  |     |       |       |

Note 1: Minimum output optical level is at end of life

**Note 2:** Sensitivity for PRBS 2<sup>7</sup>-1 and BER better than or equal to 10E-12

Note 3: Spectral width has to be defined over -20dBm

Note 4: Budget numbers are rounded to nearest 0.1 dB

Note 5: Link penalties are used for link budget calculations. They are not requirements and are not meant to be tested.



# Pin function definitions

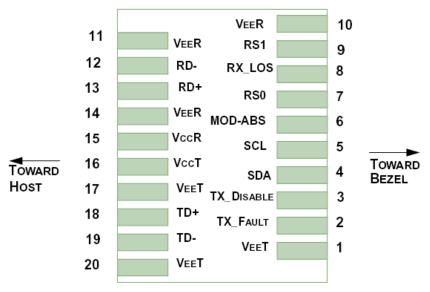



Figure 2: Pin function definitions

| Pin Number | Symbol     | Name                            | Description                                                                                                                                                                                                   |
|------------|------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,17,20    | VeeT       | Transmitter Signal Ground       | These pins should be connected to signal ground on the host board.                                                                                                                                            |
| 2          | TX Fault   | Transmitter Fault Out (OC)      | Logic "1" Output = Laser Fault (Laser off<br>before t_fault)<br>Logic "0" Output = Normal Operation<br>This pin is open collector compatible, and<br>should be pulled up to Host Vcc with a 10kΩ<br>resistor. |
| 3          | TX Disable | Transmitter Disable In (LVTTL)  | Logic "1" Input (or no connection) = Laser<br>off<br>Logic "0" Input = Laser on<br>This pin is internally pulled up to VccT with a<br>10 k $\Omega$ resistor.                                                 |
| 4          | SDA        |                                 | Serial ID with SFF 8472 Diagnostics                                                                                                                                                                           |
| 5          | SCL        | Module Definition Identifiers   | Module Definition pins should be pulled up                                                                                                                                                                    |
| 6          | MOD-ABS    |                                 | to Host Vcc with 10 $k\Omega$ resistors.                                                                                                                                                                      |
| 7          | RS0        | -Receiver Rate Select (LVTTL)   | These pins have an internal $33k\Omega$ pull-down                                                                                                                                                             |
| 9          | RS1        | Transmitter Rate Select (LVTTL) | to ground. A signal on either of these pins will not affect module performance.                                                                                                                               |
| 8          | LOS        | Loss of Signal Out (OC)         | Sufficient optical signal for potential<br>BER < $1 \times 10^{-12}$ = Logic "0"<br>Insufficient optical signal for potential                                                                                 |

#### Table 1: Transceiver pin descriptions



|          |       |                              | $BER < 1x10^{-12} = Logic "1"$                       |  |
|----------|-------|------------------------------|------------------------------------------------------|--|
|          |       |                              | This pin is open collector compatible, and           |  |
|          |       |                              | should be pulled up to Host Vcc with a $10 k \Omega$ |  |
|          |       |                              | resistor.                                            |  |
| 10 11 14 | VeeR  | Dessiver Signal Cround       | These pins should be connected to signal             |  |
| 10,11,14 | veer  | Receiver Signal Ground       | ground on the host board.                            |  |
|          |       | Receiver Negative DATA Out   | Light on = Logic "0" Output Receiver DATA            |  |
| 12       | RD-   | -                            | output is internally AC coupled and series           |  |
|          |       | (CML)                        | terminated with a $50\Omega$ resistor.               |  |
|          |       | Receiver Positive DATA Out   | Light on = Logic "1" Output Receiver DATA            |  |
| 13       | RD+   |                              | output is internally AC coupled and series           |  |
|          |       | (CML)                        | terminated with a $50\Omega$ resistor.               |  |
|          |       |                              | This pin should be connected to a filtered           |  |
| 15       | VccR  | Receiver Power Supply        | +3.3V power supply on the host board. See            |  |
|          |       |                              | Figure 3. Recommended power supply filter            |  |
|          |       |                              | This pin should be connected to a filtered           |  |
| 16       | VccT  | Transmitter Power Supply     | +3.3V power supply on the host board. See            |  |
|          |       |                              | Figure 3.Recommended power supply filter             |  |
|          |       |                              | Logic "1" Input = Light on Transmitter DATA          |  |
| 18       | TD+   | Transmitter Positive DATA In | inputs are internally AC coupled and                 |  |
| 10       | (CML) |                              | terminated with a differential $100\Omega$ resistor. |  |
|          |       |                              | Logic "0" Input = Light on Transmitter DATA          |  |
| 19       | TD-   | Transmitter Negative DATA In | inputs are internally AC coupled and                 |  |
| 19       | ID-   | (CML)                        | terminated with a differential $100\Omega$ resistor. |  |
|          |       |                              | terminated with a differential 1002 resistor.        |  |

# **Typical application circuit**

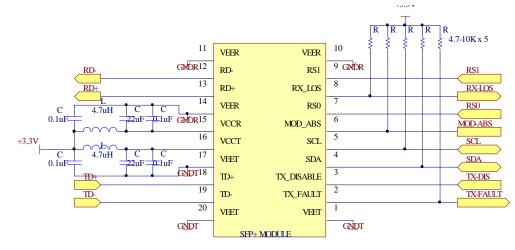



Figure 3: Typical application schematics



# Electrostatic Discharge (ESD)

The RTXM228 is compatible with ESD levels found in typical manufacturing and operating environments as described in Table 2. In the normal handling and operation of optical transceivers, ESD is of concern in two circumstances.

The first case is during handling of the transceiver prior to insertion into an SFP+ compliant cage. To protect the device, it's important to use normal ESD handling pre-cautions. These include use of grounded wrist straps, work-benches and floor wherever a transceiver is handled.

The second case to consider is static discharges to the exterior of the host equipment chassis after installation. If the optical interface is exposed to the exterior of host equipment cabinet, the transceiver may be subject to system level ESD requirements.

# Electromagnetic Interference (EMI)

Equipment incorporating gigabit transceivers is typically subject to regulation by the FCC in the United States, CENELEC EN55022 (CISPR 22) in Europe and VCCI in Japan. The RTXM228 compliance to these standards is detailed in Table 2. The metal housing and shielded design of the RTXM228 minimizes the EMI challenge facing the equipment designer.

# EMI Immunity (Susceptibility)

Due to its shielded design, the EMI immunity of the RTXM228 exceeds typical industry standards.

Table 2: Regulatory compliance

| Feature                              | Test Method                | Performance                         |  |
|--------------------------------------|----------------------------|-------------------------------------|--|
| Electrostatic Discharge (ESD) to the | MIL-STD-883C Method 3015.4 | Class 1 (> 1500 Volts)              |  |
| Electrical Pins                      |                            |                                     |  |
|                                      |                            | Typically, no damage occurs with 15 |  |
| Electrostatic Discharge (ESD) to the | Variation of IEC 61000-4-2 | kV when the duplex LC connector     |  |
| Duplex LC Receptacle                 |                            | receptacle is contacted by a Human  |  |
|                                      |                            | Body Model probe.                   |  |
| Electromagnetic Interference (EMI)   | CISPR22 ITE Class B        | Compliant with standards            |  |
|                                      | EN55022 Class B            |                                     |  |
|                                      |                            | Typically show no measurable effect |  |
| Immunity                             | IEC61000-4-3 Class 2       | from a 3V/m field swept from 80 to  |  |
| minunty                              | EN55024                    | 1000MHz applied to the transceiver  |  |
|                                      |                            | without a chassis enclosure.        |  |
|                                      |                            | Less than 1000 ppm of cadmium,      |  |
|                                      |                            | lead, mercury, hexavalent           |  |
| RoHS Compliance                      |                            | chromium, polybrominated            |  |
|                                      |                            | biphenyls, and polybrominated       |  |
|                                      |                            | biphenyl ethers.                    |  |





#### **Digital Diagnostic Interface Definition**

The 2-wire serial interface addresses of the SFP+ module are 1010000x (A0h) and 1010001x (A2h). Shown in Figure 4.

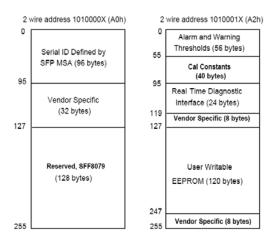



Figure 4: Digital Diagnostic Memory Map

Accessing Serial ID Memory uses the 2 wire address 1010000X (A0). Memory Contents of Serial ID are shown in Table 3.

| Data                                      | Size           | Name of Field     | Contonte (Hoy)             | Description                               |  |  |  |  |
|-------------------------------------------|----------------|-------------------|----------------------------|-------------------------------------------|--|--|--|--|
| Address                                   | (Bytes)        |                   | Contents(Hex)              | Description                               |  |  |  |  |
|                                           | BASE ID FIELDS |                   |                            |                                           |  |  |  |  |
| 0                                         | 1              | Identifier        | 03                         | SFP+                                      |  |  |  |  |
| 1                                         | 1              | Ext. Identifier   | 04                         | SFP function is defined by serial ID only |  |  |  |  |
| 2                                         | 1              | Connector         | 07                         | LC Connector                              |  |  |  |  |
| 3-10                                      | 8              | Transceiver       |                            | Transceiver Codes                         |  |  |  |  |
| 11                                        | 1              | Encoding          | 03                         | NRZ                                       |  |  |  |  |
| 12                                        | 1              | BR, Nominal       | 3D                         | 6.144Gbit/s                               |  |  |  |  |
| 13                                        | 1              | Reserved          |                            |                                           |  |  |  |  |
| 14                                        | 1              | Length (9µm) km   | OF                         |                                           |  |  |  |  |
| 15                                        | 1              | Length (9µm) 100m | 00                         | Transceiver transmit distance             |  |  |  |  |
| 16                                        | 1              | Length (50µm) 10m | 00                         | 15km                                      |  |  |  |  |
| 17                                        | 1              | Length(62.5µm)10m | 00                         |                                           |  |  |  |  |
| 18                                        | 1              | Length (Copper)   | 00                         | Not compliant                             |  |  |  |  |
| 19                                        | 1              | Reserved          |                            |                                           |  |  |  |  |
| 20-35                                     | 14             | Vendor name       | 57 54 44 20 20 20 20 20 20 |                                           |  |  |  |  |
| 20-35                                     | 16             | vendor name       | 20 20 20 20 20 20 20 20 20 | "WTD" (ASCII)                             |  |  |  |  |
| 36                                        | 1              | Reserved          |                            |                                           |  |  |  |  |
| 37-39                                     | 3              | Vendor OUI        | 00 1C AD                   |                                           |  |  |  |  |
| 40-55                                     | 16             | Vendor PN         |                            | Transceiver part number                   |  |  |  |  |
| 56-59                                     | 4              | Vendor rev        | 20 20 20 20                |                                           |  |  |  |  |
| Wuhan Telecommunication Devices Co. 1td 7 |                |                   |                            |                                           |  |  |  |  |

#### Table 3: Serial ID Memory Contents



| 60-61                     | 2   | Wavelength                    | Transceiver wavelength                |                                           |  |  |  |
|---------------------------|-----|-------------------------------|---------------------------------------|-------------------------------------------|--|--|--|
| 62                        | 1   | Reserved                      |                                       |                                           |  |  |  |
| 63                        | 1   | CC_BASE                       | Check Sum (Variable)                  | Check code for Base ID Fields             |  |  |  |
| EXTENDED ID FIELDS        |     |                               |                                       |                                           |  |  |  |
| 64-65                     | 2   | Options                       | ions 00 1A TX_DISABLE, TX_FAULT and L |                                           |  |  |  |
| 04-05                     | 2   | Options                       | 00 1A                                 | Signal implemented.                       |  |  |  |
| 66                        | 1   | BR,max                        | 00                                    |                                           |  |  |  |
| 67                        | 1   | BR,min                        | 00                                    |                                           |  |  |  |
| 68-83                     | 16  | Vendor SN                     | 42 30 30 39 38 32 32 20               | Serial Number of transceiver (ASCII). For |  |  |  |
| 00-03                     | 10  |                               | 20 20 20 20 20 20 20 20 20            | example "B009822".                        |  |  |  |
| 84-91                     | 8   | Date code                     | 30 32 31 30 30 35 20 20               | Manufactory date code. For example        |  |  |  |
| 04-71                     | 0   | Date code                     | 30 32 31 30 30 33 20 20               | "021005".                                 |  |  |  |
|                           |     |                               |                                       | Digital diagnostic monitoring             |  |  |  |
| 92                        | 1   | Diagnostic<br>Monitoring Type | 68                                    | implemented, "internal calibrated" is     |  |  |  |
| 72                        | I   |                               |                                       | implemented, RX measurement type is       |  |  |  |
|                           |     |                               |                                       | Average Power.                            |  |  |  |
|                           |     |                               |                                       | Optional Alarm/Warning flags              |  |  |  |
|                           |     |                               |                                       | implemented for all monitored quantities, |  |  |  |
| 93                        | 1   | Enhanced Options              | F6                                    | Optional Soft TX_FAULT monitoring         |  |  |  |
|                           |     |                               |                                       | implemented, Optional Soft RX_LOS         |  |  |  |
|                           |     |                               |                                       | monitoring implemented.                   |  |  |  |
| 94                        | 1   | SFF_8472                      | 03                                    | Includes functionality described in       |  |  |  |
| 94                        | I   | Compliance                    | 05                                    | Rev10.2 SFF-8472.                         |  |  |  |
| 95                        | 1   | CC_EXT                        | Check Sum (Variable)                  | Check sum for Extended ID Field.          |  |  |  |
| VENDOR SPECIFIC ID FIELDS |     |                               |                                       |                                           |  |  |  |
| 96-127                    | 32  | Vendor Specific               | Read only                             | Depends on customer information           |  |  |  |
| 128-255                   | 128 | Reserved                      | Read only                             |                                           |  |  |  |

## **Diagnostic Monitor Functions**

Diagnostic Monitor Functions interface uses the 2 wire address 1010001X (A2). Memory contents of Diagnostic Monitor Functions are shown in Table 4

| Data Address | Field Size (bytes)           | Name                     | Contents and Description |  |  |  |  |
|--------------|------------------------------|--------------------------|--------------------------|--|--|--|--|
|              | Alarm and Warning Thresholds |                          |                          |  |  |  |  |
| 00-01        | 2                            | Temperature High Alarm   |                          |  |  |  |  |
| 02-03        | 2                            | Temperature Low Alarm    |                          |  |  |  |  |
| 04-05        | 2                            | Temperature High Warning |                          |  |  |  |  |
| 06-07        | 2                            | Temperature Low Warning  |                          |  |  |  |  |
| 08-09        | 2                            | Vcc High Alarm           |                          |  |  |  |  |
| 10-11        | 2                            | Vcc Low Alarm            |                          |  |  |  |  |
| 12-13        | 2                            | Vcc High Warning         |                          |  |  |  |  |

Table 4: Memory contents of Diagnostic Monitor Function



| 14-15   | 2       | Vcc Low Warning                 |             |
|---------|---------|---------------------------------|-------------|
| 16-17   | 2       | Bias High Alarm                 |             |
| 18-19   | 2       | Bias Low Alarm                  |             |
| 20-21   | 2       | Bias High Warning               |             |
| 22-23   | 2       | Bias Low Warning                |             |
| 24-25   | 2       | TX Power High Alarm             |             |
| 26-27   | 2       | TX Power Low Alarm              |             |
| 28-29   | 2       | TX Power High Warning           |             |
| 30-31   | 2       | TX Power Low Warning            |             |
| 32-33   | 2       | RX Power High Alarm             |             |
| 34-35   | 2       | RX Power Low Alarm              |             |
| 36-37   | 2       | RX Power High Warning           |             |
| 38-39   | 2       | RX Power Low Warning            |             |
| 40-55   | 16      | Reserved                        |             |
|         |         | Calibration Constants           |             |
| 56-59   | 4       | RX Power Calibration Data4      | 00 00 00 00 |
| 60-63   | 4       | RX Power Calibration Data3      | 00 00 00 00 |
| 64-67   | 4       | RX Power Calibration Data2      | 00 00 00 00 |
| 68-71   | 4       | RX Power Calibration Data1      | 3F 80 00 00 |
| 72-75   | 4       | RX Power Calibration Data0      | 00 00 00 00 |
| 76-77   | 2       | Bias Calibration Data1          | 01 00       |
| 78-79   | 2       | Bias Calibration Data0          | 00 00       |
| 80-81   | 2       | TX Power Calibration Data1      | 01 00       |
| 82-83   | 2       | TX Power Calibration Data0      | 00 00       |
| 84-85   | 2       | Temperature Calibration Data1   | 01 00       |
| 86-87   | 2       | Temperature Calibration Data0   | 00 00       |
| 88-89   | 2       | Vcc Calibration Data1           | 01 00       |
| 90-91   | 2       | Vcc Calibration Data0           | 00 00       |
| 92-94   | 3       | Reserved                        |             |
| 95      | 1       | Check Sum                       |             |
|         | Real Ti | me Diagnostic Monitor Interface |             |
| 96-97   | 2       | Measured Temperature            |             |
| 98-99   | 2       | Measured Vcc                    |             |
| 100-101 | 2       | Measured Bias                   |             |
| 102-103 | 2       | Measured TX Power               |             |
| 104-105 | 2       | Measured RX Power               |             |
| 106-109 | 4       | Reserved                        |             |
| 110     | 1       | Logic Status                    |             |
| 111     | 1       | AD Conversion Updates           |             |
| 112-119 | 8       | Alarm and Warning Flags         |             |
|         |         | Vendor Specific                 |             |
| 120-127 | 8       | Vendor Specific                 |             |
|         |         |                                 |             |

|  |  | empoi |
|--|--|-------|

mpowering the fiber

| 128-247 | 120 | User writable EEPROM |  |
|---------|-----|----------------------|--|
| 248-255 | 8   | Vendor Specific      |  |

### **Transceiver Timing Characteristics**

 $(Tc=-40 \ ^{\circ}C \ to \ 85 \ ^{\circ}C \ and \ VccT, \ VccR = 3.145 \ to \ 3.465)$ 

| Parameter                                      | Symbol          | Minimum | Maximum | Unit | Notes |
|------------------------------------------------|-----------------|---------|---------|------|-------|
| Hardware TX_DISABLE Assert Time                | t_off           |         | 10      | μs   | 1     |
| Hardware TX_DISABLE Negate Time                | t_on            |         | 1       | ms   | 2     |
| Time to initialize including reset of TX_FAULT | t_init          |         | 300     | ms   | 3     |
| Hardware TX_FAULT Assert Time                  | t_fault         |         | 100     | μs   | 4     |
| Hardware TX_DISABLE to Reset                   | t_reset         | 10      |         | μs   | 5     |
| Hardware RX_LOS DeAssert Time                  | t_loss_on       |         | 100     | μs   | 6     |
| Hardware RX_LOS Assert Time                    | t_loss_off      |         | 100     | μs   | 7     |
| Software TX_DISABLE Assert Time                | t_off_soft      |         | 100     | ms   | 8     |
| Software TX_DISABLE Negate Time                | t_on_soft       |         | 100     | ms   | 9     |
| Software Tx_FAULT Assert Time                  | t_fault_soft    |         | 100     | ms   | 10    |
| Software Rx_LOS Assert Time                    | t_loss_on_soft  |         | 100     | ms   | 11    |
| Software Rx_LOS De-Assert Time                 | t_loss_off_soft |         | 100     | ms   | 12    |
| Analog parameter data ready                    | t_data          |         | 1000    | ms   | 13    |
| Serial bus hardware ready                      | t_serial        |         | 300     | ms   | 14    |
| Write Cycle Time                               | t_write         |         | 10      | ms   | 15    |
| Serial ID Clock Rate                           | f_serial_clock  |         | 400     | kHz  |       |

**Note 1:** Time from rising edge of TX\_DISABLE to when the optical output falls below 10% of nominal.

**Note 2:** Time from falling edge of TX\_DISABLE to when the modulated optical output rises above 90% of nominal.

**Note 3:** Time from power on or falling edge of Tx\_Disable to when the modulated optical output rises above 90% of nominal.

**Note 4:** From power on or negation of TX\_FAULT using TX\_DISABLE.

Note 5: Time TX\_DISABLE must be held high to reset the laser fault shutdown circuitry.

Note 6: Time from loss of optical signal to Rx\_LOS Assertion.

**Note 7:** Time from valid optical signal to Rx\_LOS De-Assertion.

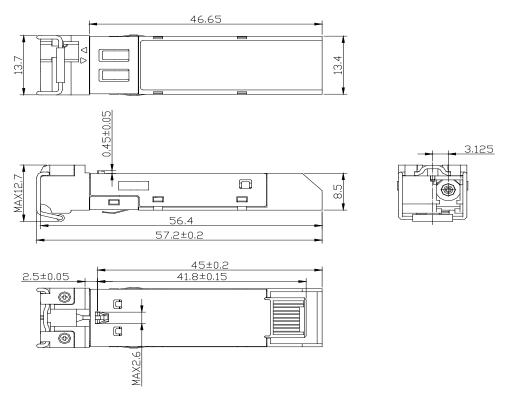
**Note 8:** Time from two-wire interface assertion of TX\_DISABLE (A2h, byte 110, bit 6) to when the optical output falls below 10% of nominal. Measured from falling clock edge after stop bit of write transaction.

**Note 9:** Time from two-wire interface de-assertion of TX\_DISABLE (A2h, byte 110, bit 6) to when the modulated optical output rises above 90% of nominal.

Note 10: Time from fault to two-wire interface TX\_FAULT (A2h, byte 110, bit 2) asserted.

**Note 11:** Time for two-wire interface assertion of Rx\_LOS (A2h, byte 110, bit 1) from loss of optical signal. **Note 12:** Time for two-wire interface de-assertion of Rx\_LOS (A2h, byte 110, bit 1) from presence of valid optical signal.

Note 13: From power on to data ready bit asserted (A2h, byte 110, bit 0). Data ready indicates analog




monitoring circuitry is functional.

**Note 14:** Time from power on until module is ready for data transmission over the serial bus (reads or writes over A0h and A2h).

*Note 15:* Time from stop bit to completion of a 1-8 byte write command.

#### Package outline (Unit: mm)



Unit: mm Unspecified Tolerance: ±0.1mm

# **Ordering Information**

|              | Specifications |              |        |          |          |             |                 | Annlingtion |        |             |  |
|--------------|----------------|--------------|--------|----------|----------|-------------|-----------------|-------------|--------|-------------|--|
| Part No      | Package        | e Data rate  | Laser  | Optical  | Detector | Sensitivity | <b>T</b> a ma m | Reach       | Others | Application |  |
|              |                |              |        | Power    |          | OMA         | Temp            |             |        |             |  |
| RTXM228-661  | SFP+           | 2.4576~6.144 | 1270nm | -8.4     | 1330nm   | <-13.8      | -40~85          | 15          | DDM    | CPRI/OBSAI  |  |
| RTAN/220-001 |                | Gb/s         | DFB    | ~+0.5dBm | PIN      | dBm         | °C              | km          |        | CPRI/OBSAI  |  |
| RTXM228-662  | SFP+           | 2.4576~6.144 | 1330nm | -8.4     | 1270nm   | <-13.8      | -40~85          | 15          | DDM    |             |  |
|              |                | Gb/s         | DFB    | ~+0.5dBm | PIN      | dBm         | °C              | km          | DDIVI  | CPRI/OBSAI  |  |



WTD reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Edition 2010-7-2

Published by Wuhan Telecommunication Devices Co.,Ltd.

Copyright © WTD

All Rights Reserved.