"A Company of Good People"

ACRICH2 Roadshow 2012

Seoul Semiconductor

Revenue 2011: 1000Mio US\$

2610 employees

Number 4 * LED supplier

* Source Strategies Unlimited and IMS

New Chip Factory

New Ansan factory , ${\bf Ramp}\ {\bf up}\ {\bf in}\ {\bf July}\ {\bf 2011}$

Investment US\$ 275M

Korea	m ²	Remark
Seoul	4,816	Chip LED/R&D/Sales
Ansan	82,183	MO-Line / FAB-Line / PKG Line

Our Main Products

- Our approach is to simplify LED lamp design
- No Driver loss
- Reduce lamp weight
- Low circuit cost
- Lifetime (Acrich2 Solution: 50,000hr / DC LED Lamp : 15,000hr)
- Flicker improvement
- Dimming support

What is Acrich?

- □ Acrich is a compound word of Acro and Rich
- □ Acrich is used in direct AC driving without AC/DC Converter
- □ Acrich is available for AC High voltage through an Integrated chip

[Meaning]

- \checkmark "Acro" = Top or First
- ✓ "rich" = Value
- → Top semiconductor lighting technology

[What is Acrich?]

✓ Monolithic array of LED cells create a high voltage LED

Acrich LED

What is Acrich?

- □ 1'st generation of Acrich has One directional and bidirectional product.
- □ One directional with a bridge diode is more efficient than bidirectional.

Acrich Technology (High Voltage)

 HV LED has that high voltage die is driven with converter, High voltage die use the Acrich Technique that single die has the multi-cell

SEOUL SEMICONDUCTOR

SEOUL

 Acrich Technology is the multi-cell in single die, we can control the voltage by cell number.

Using same Die(one direction) in Acrich 2 and HV LED. But Driven method is different each other

Acrich vs Acrich2 (AC Module)

- Acrich2 integrates essential components used with Acrich, such as resistors and bridge diodes, in single IC
 - Power Factor improved above 97%
 - THD improved below 25%
 - Flicker improvement

SEOUL SEMICONDUCTOR

SEOUL

	Acrich	Acrich 2
efficiency	80%	90%
Power Factor	90%	97%
THD	Below 50%	Below 25%
Flicker Ratio	1	100V = 0.25 220V = 0.25
Components	Resistor, Bridge Diode	Integrated in an IC

Acrich vs Acrich2 (AC Module)

How Acrich IC works in Acrich2

AC Input Current Wave Circuit Diagram of Acrich 2 (= Acrich's Driving Current) AC line voltage 220Vac Acrich Acrich Group 1 Group 5 Region Phase 5 6 ¹⁸⁰ Group 2 Group 6 360 123 4 Acrich IC AC input current Group 3 Group 7 Group 8 Group 4

□ Functional Description of Acrich2 (Ex. 220V 8W application)

Description of the Acrich's Operation

- ♦ Operation of the Acrich group 1~4 same as a group 5~8
- ◆ Operation table of each Acrich group (phase 0 ~ 180°)

Region	1	2	3	4	5	6	7
Group 1	ON	ON	ON	ON	ON	ON	ON
Group 2	OFF	ON	ON	ON	ON	ON	OFF
Group 3	OFF	OFF	ON	ON	ON	OFF	OFF
Group 4	OFF	OFF	OFF	ON	OFF	OFF	OFF

What is different?

No AC-DC Converter !

- ✓ Smaller Heat Sink \rightarrow Cost saving
- ✓ Less Quality Issue → High reliability
- ✓ Longer Life time
- \rightarrow Low maintenance cost
- ✓ Higher Power Factor → Eco-friendly
- ✓ More Design Flexibility → Aesthetic design

What is different?

DC Module vs Acrich Module Comparison

Item	Acrich IC Solution	AC-DC converter
AC Driving Configurations	AC line voltage	AC line voltage
Electrical Components For AC driving	IC + simple surge protection circuit	Need a lot of components : 10~50ea Image: Components in the second s
Driving Circuit Size	8mm X 8mm, 6mm X 6mm	Need several hundred mm2
Power Efficiency	> 90 %	70 ~ 90 %
Power Factor	> 0.95	0.4 ~ 0.95
THD	< 25%	10~95%
Circuit Life Time	87,600 hrs at Tjmax = 125°C	10,000~15,000hrs at Topr = 70°C (Electrolytic Capacitor)
Circuit Cost	Low cost	Normal
Module Surge Test	> 3kV	-
Space utilization	Excellent	Limitation

DC Module vs Acrich Module Comparison

□ Comparison chart – 8 W bulb, 220 V

✓ Acrich2 is competitive = 2 X Lifetime, ½ Power consumption, 2 X Design flexibility

	Bulb					
	Acrich2	Acrich2+	A Company	B Company	C Company	Remark
Circuit	Acrich IC	Acrich IC	AC-DC Converter (electrolytic cap)	AC-DC Converter (electrolytic cap)	AC-DC Converter (electrolytic cap)	
Circuit						
Power Adjust	4W / 8W	<u>3~16W</u>	0	0	0	
Relative lifetime [p.u]	1	1	0.22	0.22	0.16	Defer to D20, 22
Capacitor temperature	Cap. less	Cap. less	75 ℃	77 ℃	30 C	Relef to P20~22
Relative apparent power [p.u]	1	1	2	1.08	1.33	Bofor to B22
Power Factor	0.97 ↑	0.99↑	0.54	0.96	0.82	Relei lo P23
Driver Efficiency [%]	90 %	90 %	81 %	84 %	80 %	
THD [%]	25 %↓	<u>15 %↓</u>	65 %	9.1 %	25.9 %	
Efficacy [lm/W]	72 lm/W	72 lm/W	75 lm/W	71 lm/W	54 lm/W	* module + converter

* Condition. : CRI : 82 / CCT : 3000 K

UL Certification of Acrich2

 Seoul Semiconductor
 02/06/2012

 Mr. Hyunwoo Paik
 1b-36, 727-5 Wonsi-dong

 Danwon-gu

 Ansan-city Kyunggi-do 425-851, Kr

 Our Reference:
 File E315508, Vol. 1

 Project Number
 11CA60862

 Your Reference:
 PAIK, HYUNWOO MR.

 Project Scope:
 Component, LED Modules, Model SMJEA3012220, SMJEA3011220

Dear Mr. Hyunwoo Paik:

UL's investigation of your product(s) has been completed under the above Reference Number and the product was determined to comply with the applicable requirements.

This letter temporarily supplements the UL Follow-Up Services Procedure and serves as authorization to apply the UL Mark only at authorized factories under UL's Follow-Up Service Program.

To provide the manufacturer with the intended authorization to use the UL Mark, the addressee must send a copy of this notice to each manufacturing location currently authorized in File E315508, Vol. 1.

This authorization is effective from the date of this Notice and only for products at the indicated manufacturing locations. Records in the Follow-Up Services Procedure covering the product are now being prepared and will be sent in the near future. Until then, this letter authorizes application of the UL Mark for 90 days from the date of this letter.

Products that bear the UL Mark shall be identical to those that were evaluated by UL and found to comply with UL's requirements. If changes in construction are discovered, appropriate action will be taken for products not in conformance with UL's requirements and continued use of the UL Mark may be withdrawn. UL may elect to withdraw use of the UL Mark if the Applicant or Manufacturer fails to comply with UL's requirements including ongoing compliance of the product, under UL's Follow-Up Service. Notice of Authorization - 11CA60662

Any information and documentation provided to you involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL.

The contents of this Letter are intended solely for the use of UL and the Applicant. The opinions and findings of UL represent its judgment given with due consideration to the necessary limitations of practical operation in accordance with UL's objectives and purposes. UL shall not otherwise be responsible for the use of or reliance upon the contents of this letter by anyone. UL shall not incur any obligation or liability for any loss, expense or damages, including incidental, consequential or punitive damages, arising out of or in connection with the use or reliance upon the contents of this letter to anyone other than the Applicant as provided in the agreement between UL and Applicant. Any use or reference to UL's name or certification mark(s) by anyone other than the Applicant in accordance with the agreement is prohibited without the express written approval of UL.

Introducing family of Acrich2 and ^{NEW}Acrich2

□ Acrich2 Family

- ✓ A new series of Acrich2 is now in mass production of lighting source.
- ✓ Acrich 2 are designed as 4 W, 8 W, 12 W and 16 W devices respectively.
- \checkmark New Acrich2 are revised AIC and LED PKG.

Introducing family of Acrich2 and NEW Acrich2+

Application Input Voltage Part No. # of LED # of IC 100 V SMJE-1V04W1P2-XX Bulb 120 V SMJE-2V04W1P3-XX 12 220 V SMJE-3V04W1P3-XX 4 W 1 100 V SMJP-1V04W1P1-XX MR 120 V SMJP-2V04W1P1-XX 4 220 V SMJP-3V04W1P1-XX 100 V SMJE-1V08W1P2-XX 120 V 8 W Bulb SMJE-2V08W1P3-XX 21 1 220 V SMJE-3V08W1P3-XX 100 V SMJE-1V12W1P2-XX 12 W Bulb 120 V SMJE-2V12W1P3-XX 30 2 220 V SMJE-3V12W1P3-XX 100 V SMJD-1V16W1P2-XX 16 W Down light 120 V SMJD-2V16W1P3-XX 42 2 220 V SMJD-3V16W1P3-XX

✓ Acrich2 can be diversely connected to 100 V, 120 V and 220 V outlets eliminating the need for a DC converter.

Introducing family of Acrich2 and NEW Acrich2+

Application Input Voltage Part No. # of LED # of IC 100 V TDB 8 W Bulb 120 V TDB 8 1 220 V TDB Under development 100 V **CANDLE MODULE** 8.5W **CANDLE MODULE** Candle 120 V 8 1 A 220 V **CANDLE MODULE** spec 100 V TDB 12w Bulb 120 V TDB 16 1 220 V TDB **Under development** 100 V TDB 16 W Down light 120 V SMJD-S16ES120 42 2 220 V SMJD-S16ES220 ACRICH2-

✓ Acrich2 can be diversely connected to 100 V, 120 V and 220 V outlets eliminating the need for a DC converter.

Introducing family of Acrich2 and ^{NEW} Acrich2+

□ Acrich2 Family at voltage

- ✓ MR, bulbs can be replaced by 4 W Acrich2
- ✓ Acrich2 can also be used widely in replacing traditional 40W, 60W light bulbs and down light.

		Luminous Flux [lm]						
Power Replacement	Replacement	100 V		120	120 V		0 V	Remarks
		Min	Тур	Min	Тур	Min	Тур	
4 1.64	Bulb	240	290	240	290	280	330	Ref. 220V
4 W	MR	220	245	250	290	270	320	Ref. 220V
8 W	40 W Bulb	500	570	500	570	560	640	Ref. 220V
8.5W	Candle light	_	_	_	_	520	560	Ref. 220V
12 W	60 W Bulb	780	820	800	840	900	940	Ref. 220V
16 W	Down light	1000	1100	1000	1100	1050	1250	Ref. 220V

- Acrich2 includes a fully Integrated module combining with IC for power conditioning
- Easy to design customer's own bulbs
- > Directly connect to AC power via 2 wires
- **Standard form factor to fit MR, 40W and 60W bulb**
- > Speeds time to market since light engine design is already completed
- > Dimmable

Acrich2 Benefits : Long Life Time

□ Features and Benefits

✓ Long Life time -> \$1,926(per 20sets) cost save for 11 years

Acrich2 Benefits : Design Flexibility

Acrich2 Benefits : Design Flexibility

□ High power factor of Acrich 2 enables power plant to save much electricity than when using DC LED.

SEOUL SEMICONDUCTOR

SEOUL

❑ Acrich 2 applied light bulbs can reduce as much CO₂ as two trees can due to its high power factor.

	Acrich 2	DC LED
Power Factor	0.95~0.97	0.5~0.9
Power Efficiency	≥ 90 %	75 ~ 85%
	=	+
8W Light bulb with Acrich 2		

Acrich2 Candle Module

Acrich2 Candle Module

□ Features and Benefits

Index	Acrich2 Candle	P-company Candle	G-company Candle	O-company Candle	S-company Candle
Power Consumtion [W]	8.4	3	1.8	3.5	4
Luminous Flux [lm]	450	136	75	250	230
Luminous Efficacy [lm/W]	54	45.3	41.6	71.4	57.5
Power Factor	0.96	0.6	-	-	0.9
Color Temperature[K]	3,000	2,700	3,000	2,700	2,700
Color Rendering Index [Ra]	80	90	75	80	80
Beam Angle [FWHM, °]	260	300	-	-	160
Size	40 x 117.8	35.5 x 101	35 x 104	37 X 102	35 x 102
cent/Im	2.4	14.7	24.0	-	7.6
Selling price [\$]	\$\$\$	\$20	\$17.99	New	\$17.4
Life Time	25,000h	50,000h	15,000h	25,000h	20,000h
Image		PHILIPS			D

Acrich2 Street lighting

Street light Cost %

Index	2012	2015	2020
PKG	22%	18%	12%
Mechanical /Thermal	47%	56%	62%
Driver	25%	21%	18%
Assembly	0.1%	0.1%	0.2%
Optics	5%	4%	7%

Acrich2 Street lighting

ITEM	PRODUCT	F	ix.
PKG	- 4040 PKG: 1.5W		
30W	- 4040 PKG: 22ea - AC IC: 2ea - Min.2700Im/System - PCB Size: 127.6 x 147.6(mm)		
45W	 4040 PKG: 33ea AC IC: 3ea Min.4000lm/System PCB Size: 127.4 x 233.4(mm) 		

Acrich2 Street lighting

Electrical & Optical

Index list	Luminous Flux [Im]	Watt [W]	System Efficacy [Im/W]	сст [К]	CRI
30W Module	2800	30	93	5000	Min 70
45W Module	3840	40	95	5000	Min 70

Lens Design Concept

system efficacy -> module + 2nd optic + aging 1hour

Acrich Customized Module

Down lighting

Flush mount Lamp

- < Spec. >
- Acrich2 120V 16W(17W), 138x94mm
- External diameter: 11" (325 mm)
- Internal diameter :8.25" (210 mm)
- Light source : 1600 lm
- Target Lumens: 1000 min
- Dimmable ; Yes
- Provisions for mounting to a J-Box

< Spec. > < Spec. >

Street lighting

Candle lamp

Acrich Customized Module

Road indication

Wall washer, General purpose lighting

< Spec. >

- Power consumption : ~ 12 W
- Luminous Flux : ~ 1000 lm
- Color temperature : 5,000K~7,000K
- Color Rendering Index (Ra) : 70~80

<Application>

- -Wall washer lighting
- General purpose lighting
- Flood lighting
- Garden lighting
- Architectural lighting

Acrich Customized Module

Omni direction lighting module (with 2ndary diffuse lens)

- < Spec. >
- Power consumption : 12W
- Luminous Flux : 1000 lm
- Color temperature : 5,000K~7,000K
- Color Rendering Index (Ra) : 70~80
- <Application>
- General lighting, Work lamp

Linear module

- < Spec. >
- Power consumption : ~8.4W
- Luminous Flux : ~800 Im
- Color temperature : 5,000K~7,000K
- Color Rendering Index (Ra) : 70~80

<Application>

- Retail display, Refrigerator display lighting
- Cove lighting, Linear lamp

Lead time of development

Acrich2 Develop. Process & schedule (Custom type) Module Development & MP Experience : Over 20 years !!!

Total within 7 weeks!!

Customer Application

8w bulb

17w dimmable ceiling light

Customer Application

12W/ 16W downlight

Customer Application with plasticized ceramic

4.5w MR

4.5w Bulb

12w Bulb

Customer Application with plasticized ceramic

Customer Application with plasticized ceramic

Thermal Test Report with Seoul 4.5w LED module

Point	Max Temp(℃)	Х(ТН)	Y(TH)	Comment
a1	77.76	81	56	Surface Temperature of Power IC
a2	66.76	60	58	Surface Temperature on the top of LED package
a3	61.74	37	56	Surface Temperature of MCPCB
a4	58.17	27	54	Surface Temperature of HASC near MCPCB edge

Summary

Acrich HV

Size : 5.6 x 3.0 mm Thickness : 0.75 mm

Advantages & Benefits

- . High voltage operation(Typ 19V / Typ 22V)
- . Energy Star Bin system
- . Long Life Time

Applications

- . Acrich2 Module (4W/8W/12W/16W)
- Indoor lighting
- . Bulb replacement
- . Down Light
- . Ceiling panel light

Electrical Optical Characteristics

Part No.	Color	Luminous Flux	Operating condition	Power dissipation	Luminous Efficacy	CRI	Viewing Angle	Thermal Resistance
	ССТ	[lm]	[mA @V]	[W]	[lm/W]		[°]	[R <i>θ</i> J-C , ⁰C /W]
SAW8KG0A	3700-7000	40	<u>DC 20mA @19V</u>	0.38	105	82	125	27
	2600-3700	35			93			
SAW8KG0B	3700-7000	43	DC 20mA @22V	0.44	97	82	125	27
	2600-3700	38			86			

Advantages & Benefits

- . High voltage operation(Typ 13V)
- . Energy Star Bin system
- . Long Life Time

Size : 6.5 x 4.0 mm Thickness : 0.8 mm

Applications

- . Acrich2 Linear Module
- Indoor lighting
- . Inner refrigerator

Electrical Optical Characteristics

Part No.	Color	Luminous Flux	Operating condition	Power dissipation	Luminous Efficacy	CRI	Viewing Angle	Thermal Resistance
	CCT	[lm]	[mA @V]	[W]	[lm/W]		[°]	[R <i>θ</i> J-C , ⁰C /W]
SAW8P42A	3700-7000	30	DC 20mA @13V	0.26	116	83	115	20

Size : 3.5 x 2.8 mm Thickness : 0.6 mm

Advantages & Benefits

- . High voltage operation(Typ 32.5V)
- . Energy Star Bin system
- . Long Life Time

Applications

- . Acrich2 Linear Module
- Indoor lighting
- . Inner refrigerator

Electrical Optical Characteristics

Part No.	Color	Luminous Flux	Operating condition	Power dissipation	Luminous Efficacy	CRI	Viewing Angle	Thermal Resistance
	ССТ	[lm]	[mA @V]	[W]	[lm/W]		[°]	[R <i>θ</i> J-C , ⁰C /W]
SAW8WA2A	3700-7000	120	DC 40mA @32.5V	1.3	92	00	120	23
	2600-3700	110			85	82		

Flux Roadmap_Acrich 6540

Typ_114.4 lm / 88.0 lm/W Min_104.0 lm / 80.0 lm/W

Typ_110.0 lm / 84.6 lm/W Min_102.5 lm / 78.8 lm/W

Warm

120

110

Acrich 3528

SEOUL SEMICONDUCTOR

Acrich module demokit

Warm white

lte	m	Unit	AC 220V	Remark
	Vrms	V	220	
	Arms	А	32	
电特性	Watt	W	6.5	
	PF	-	0.92	
	THD	%	21	
	Flux	lm	550	
	Efficiency	lm/W	85	
半時州		Сх	0.445	
儿付任		Су	0.414	
	CCT	K	2963	
	CRI	Ra	83	

Cool white

lt€	em	Unit	AC 220V	Remark
	Vrms	V	220	
	Arms	А	33	
电特性	Watt	W	6.6	
	PF	-	0.88	
	THD	%	22	
	Flux	lm	597	
	Efficiency	lm/W	91	
ᅶᄮᆂᆘᄮ		Сх	0.352	
儿付住		Су	0.366	
	CCT	K	4811	
	CRI	Ra	84	

Thanks

Eiffer Tower, Paris With SSC P4 Series