AIS SEM SERIES

TECHNICAL TIP.

VOLTAGE CONTRAST EFFECT

Technical sales Team
Seron Technologies Inc.

Voltage Contrast

- · In SE image, different surface potential gives different brightness
 - → affect collection field of E-T detector
 - → affect trajectory of SE (can not observed with BSE or SC)
- permits to visualize the potentials distribution on the surface of an operating semiconductor device

Normal SE imaging

+200V bias → electric field ≈ 100V/cm

\$ 92.13

en persence

IC sample with applied potential

- surface +ve → electric field <100V/cm (collection efficiency ↓) → SE recollection, δ ↓
 - → darker than grounded surrounding
- surface -ve → electric field >100V/cm (collection efficiency ↑)
 → brighter than grounded surrounding

- Voltage Contrast point in Metal Loop Contact Chain Pattern of DRAM Test Pattern.
- Bright is the floating area by negative potential from Vcc to Vss

- Voltage Contrast point in poly capacitor (storage node) contact of 256 DRAM.
- Dark point by ONO film, is caused by not open contact (All the conducting grounded)

Static Voltage Contrast

- · give a quick visual impression
 - → layout of circuit
 - → magnitude & polarity of applied potential

but, difficult to quantify

- variation of signal level ightarrow not symmetrical
 - + ve : collection efficiency ↓ ↓ ↓
 ve : collection efficiency ↑
- · signal level vs. surface potential
 - → not unique correlation
 - → local field effect
 - → SE returns back to specimen (not collected by detector)
 - ⇒ " field contrast "

Charge ring around dust particle

Important Practical Factors

1) Beam energy

→ in general, best at low kV (~2 kV)
(charging → fade voltage contrast)

for device with passivation layer (~1μm)

- → need to find optimum kV
 (by experiment)
 ∫ if too low → no contrast
 if too high → charging
- 2) Scan rate
 - → fast scan to avoid charging

Optimization of voltage contrast