

ZTE 中兴 DWDM 传输产品 日常维护与故障分析

前言

手册说明

设备安全、稳定、可靠地运行和生产,是运营商争取客户,占领 市场的关键所在。因此保障设备安全、可靠地运行和生产成为日 常维护工作最核心、最基础的目标和任务。

中兴通讯本着"精诚服务凝聚顾客身上"的原则,提供下面的 《Unitrans ZXWM32 设备简明维护手册》,保障用户顺利完成 Unitrans ZXWM32 设备日常维护工作,高效地定位并排除现场故 障。

中兴通讯建议用户的维护工作采用专人专职方式进行。

声明:由于产品和技术的不断更新、完善,本资料中的内容可能 与实际产品不完全相符,敬请谅解。如需查询产品的更新情况, 请联系当地办事处。

第 1章	设备例行维护1-1
1.1	设备维护1-1
	1.1.1 例行维护1-1
	1.1.2 突发性维护1-2
1.2	设备的例行维护操作1-3
	1.2.1 设备声音告警检查1-3
	1.2.2 机柜指示灯观察1-3
	1.2.3 单板指示灯观察1-4
	1.2.4 风扇检查和定期清理1-4
	1.2.5 公务电话检查1-4
	1.2.6 业务检查—误码测试1-5
1.3	网管的例行维护操作1-5
第2章	维护操作规范2-1
2.1	光时域反射计 OTDR2-1
2.2	激光器关断
2.3	防静电问题2-2
2.4	电源线2-2
2.5	拔插尾纤2-2
	2.5.1 拔尾纤2-3
	2.5.2 插尾纤

2.6 插拔衰耗器
2.6.1 拔衰耗器2-4
2.6.2 插衰耗器2-5
2.7 拔插衰耗器和尾纤的顺序2-5
2.7.1 插入衰耗器和尾纤的顺序2-5
2.7.2 拔出衰耗器和尾纤的顺序2-6
2.8 光纤和衰耗器的清洁
2.9 单板的拔插和更换
2.9.1 单板的拔插2-7
2.9.2 单板的更换
2.10 NCP 单板硬件复位2-11
2.11 告警声切除
2.12 环回
2.12.1 环回概念2-12
2.12.2 OTUR 接口环回2-13
2.13 中兴通讯传输光板操作规范2-14
2.13.1 运行环境
2.13.2 单板拔插规范2-14
2.13.3 芯片安装2-14
2.13.4 激光器2-14
2.13.5 光功率测试
2.13.6 误码测试2-17

		2.13.7 运输	8
		2.13.8 防静电手环	8
	2.14	识别 OA	8
第	3章	常见故障及处理3-	1
	3.1	告警名称和归类	1
		3.1.1 传输类	1
		3.1.2 设备类	6
		3.1.3 外部环境告警	7
	3.2	告警级别3-	8
	3.3	告警分析和处理	8
第	4章	常见性能及处理4-	1
	4.1	性能名称和归类4-	1
		4.1.1 光通道层性能监测 4-	1
		4.1.2 光复用段层性能监测4-	2
		4.1.3 光传送层性能监测 4-	2
		4.1.4 光监控通路性能监测4-	-2
		4.1.5 OADM 性能监测参数4-	.3
	4.2	性能分类4-	3
		4.2.1 光功率性能4-	3
		4.2.2 误码性能4-	4
		4.2.3 温度性能4-	5
		4.2.4 电流性能	.5

4.3	性能分析及处理
第5章	网管维护和巡检指导5-1
5.1	网管维护和巡检指导
	5.1.1 网管维护检查和巡检分类5-1
	5.1.2 日常维护检查和巡检的基本原则5-2
	5.1.3 网管日常维护检查和巡检项目5-2
	5.1.4 网管操作建议指导
5.2	网络数据配置检查指导5-14
	5.2.1 组网信息
	5.2.2 网元信息
	5.2.3 硬件配置
	5.2.4 连接关系
	5.2.5 业务配置
	5.2.6 时钟配置
	5.2.7 公务配置
	5.2.8 保护配置
	5.2.9 人身安全配置 5-39
	5.2.10 开销配置
	5.2.11 维护配置
	5.2.12 数据相关配置 5-44
5.3	工程巡检操作
	5.3.1 工程巡检操作流程

	5.3.2 当前告警查询 5-5	0
	5.3.3 历史告警查询 5-5	5
	5.3.4 当前越门限告警	2
	5.3.5 历史越门限告警	7
	5.3.6 历史杂合事件 5-7	3
	5.3.7 当前性能查询 5-7	6
	5.3.8 历史性能查询 5-8	2
	5.3.9 功能性测试	7
附录 A	单板功能和主要指标A-	1
A.1	单板功能	1
	A.1.1 NCP 板A-	1
	A.1.2 OTU 单板 A-	1
	A.1.3 OMU 单板A-	1
	A.1.4 ODU 单板A-	1
	A.1.5 OAD 单板A-	2
	A.1.6 OA 单板A-	2
	A.1.7 OSC 单板A-	2
	A.1.8 OW 单板A-	2
	A.1.9 OPM 单板A-	2
	A.1.10 OGMD 单板A-	3
	A.1.11 OP 单板A-	3
	A.1.12 OPCS 单板A-	3

	A.1.13 OPMS 单板 A	-3
	A.1.14 SRM 单板A	-3
	A.1.15 GEM 单板A	-4
A.2	单板正常工作时的功率标称值和工作范围 A	-4
	A.2.1 OTU 单板 A	-4
	A.2.2 OMU 单板 A	-5
	A.2.3 ODU 单板A	-5
	A.2.4 OAD 单板A	-5
	A.2.5 OA 单板 (OBA/OPA/OLA) A	-6
附录 B	功率均衡B	-1
B.1	功率均衡目标B	-1
B.2	功率均衡的四个控制点B	-2
B.3	关键节点功率控制B	-3
	B.3.1 SDH 和 OTU 连接点的功率控制 B	-3
	B.3.2 OTU 输出光功率控制 B	-4
	B.3.3 OMU 光功率控制 B	-4
	B.3.4 OBA 光功率控制 B	-5
	B.3.5 OLA 光功率控制 B	-6
	B.3.6 OPA 光功率控制B	-7
	B.3.7 ODU 光功率控制B	-8
	B.3.8 OSC 光功率控制 B	-9
	B.3.9 OAD 光功率控制B	-9

图目录

冬	2-1	SC/PC 光接头2-3
冬	2-2	SC 光衰耗器
冬	2-3	单板各部件名称
冬	2-4	拔出单板前后的扳手扣位情况2-9
冬	2-5	NCP 复位按钮2-11
冬	2-6	平均发送光功率测试
冬	2-7	误码测试连接关系图 2-17
冬	5-1	站点类型/距离/衰耗图5-15
冬	5-2	波长分配图
冬	5-3	网络拓扑图
冬	5-4	单板安装面板图
冬	5-5	NCP 数据传送
冬	5-6	单板管理对话框
冬	5-7	网元连接对话框
冬	5-8	时钟配置框
冬	5-9	公务配置
冬	5-10	巡检操作流程
冬	5-11	当前告警框
冬	5-12	告警查询设置对话框(常规)5-53

冬	5-13	告警查询设置对话框(高级)5-54
冬	5-14	当前告警对话框5-58
冬	5-15	告警查询设置对话框(常规)5-59
冬	5-16	告警查询设置对话框(高级)5-60
冬	5-17	备份信息对话框5-61
冬	5-18	当前越门限告警对话框5-64
冬	5-19	告警查询设置对话框(常规)5-65
冬	5-20	告警查询设置对话框(高级)5-66
冬	5-21	历史越门限告警对话框5-70
冬	5-22	告警查询设置对话框(常规)5-71
冬	5-23	告警查询设置对话框(高级)5-72
冬	5-24	备份信息对话框
冬	5-25	历史杂合事件对话框5-76
冬	5-26	备份信息对话框
冬	5-27	当前性能对话框
冬	5-28	性能查询设置对话框5-80
冬	5-29	保存当前性能事件 5-81
冬	5-30	历史性能对话框5-85
冬	5-31	性能查询设置对话框5-86
冬	5-32	保护倒换测试窗口5-88
冬	5-33	两节点业务保护原理5-94

表目录

表	1-1	ZTE 中兴传输设备例行维护项目列表1-1
表	1-2	机柜指示灯及含义1-3
表	3-1	OTU/SRM/GEM 板激光器输出无光告警3-9
表	3-2	OTU/SRM/GEM 板输入无光告警3-10
表	3-3	OTU/SRM/GEM 板输入无光告警3-11
表	3-4	OTU/SRM/GEM 板输出弱光告警3-12
表	3-5	OTU/SRM/GEM 板输入弱光告警3-13
表	3-6	OTU/SRM/GEM 板输入弱光告警3-14
表	3-7	OA 板输入无光告警
表	3-8	OA 板输入弱光告警
表	3-9	OA 板输出无光告警
表	3-10	0A 板输出光功率过弱告警3-18
表	3-11	OMU 板主输出无光告警3-19
表	3-12	OMU 板主输出弱光告警3-20
表	3-13	ODU 板总输入无光告警3-21
表	3-14	ODU 板总输入弱光告警3-22
表	3-15	ODU 板通道1(2,332)无光告警
表	3-16	OTU/SRM/GEM 板误码过限告警提示
表	3-17	OTUF 板 FEC 幀丢失告警

表	3-18	OTU/SRM/GEM 板信号失锁告警3-27
表	3-19	0SC 板 A/B 向信号中断告警3-28
表	3-20	0SC 板 A/B 向误码类告警
表	3-21	0SC 板 A/B 向幀失步告警
表	3-22	OTU/SRM/GEM 板输入过载告警
表	3-23	0SC 板 A/B 向接收功率过限告警3-33
表	3-24	OTU/SRM/GEM 板 JO 路径踪迹失配告警
表	3-25	超温和温度过限告警3-35
表	3-26	电流过大告警
表	3-27	板不在位告警
表	3-28	插板告警
表	3-29	板不匹配告警
表	3-30	环境监控告警
表	3-31	风扇故障告警3-41
表	4-1	OTU 激光器输出光功率性能值过限4-7
表	4-2	SRM/GEM 单板激光器输出光功率性能值过限4-8
表	4-3	OTU 板(APD/PIN 接收模块)输入光功率过限4-9
表	4-4	SRM/GEM 单板输入光功率过限4-11
表	4-5	ODU 板通道1(2,3,32)光功率性能值过限4-13
表	4-6	ODU 板输入总光功率性能值过限4-14
表	4-7	OMU 板主输出光功率性能值过限4-15
表	4-8	OAD 板支路1(2,3,8)光功率性能值过限4-16

表	4-9	OGMD 板光功率性能值过限
表	4-10	SDM 板光功率性能值过限4-18
表	4-11	0P/0PCS 板光功率性能值过限4-19
表	4-12	OBA 输入光功率性能值过限4-20
表	4-13	OBA 输出光功率性能值过限4-21
表	4-14	0PA 输入光功率性能值过限4-22
表	4-15	OPA 输出光功率性能值过限4-23
表	4-16	0LA 输入光功率性能值过限4-24
表	4-17	0LA 输出光功率性能值过限4-25
表	4-18	OSC A/B 向接收光功率性能值过限4-26
表	4-19	OTU/SRM/GEM B1 误码性能4-27
表	4-20	0SC 板 A/B 向误码性能4-29
表	4-21	0SC 板 A/B 向幀失步次数性能 4-31
表	4-22	温度过限性能4-32
表	4-23	电流过限性能4-33
表	5-1	网管系统硬件状态5-2
表	5-2	系统磁盘空间占用情况5-2
表	5-3	网管系统运行效率
表	5-4	网管系统防火墙及补丁5-3
表	5-5	密码权限安全控制
表	5-6	监控服务器程序运行状态
表	5-7	网管数据备份

表	5-8	检查日志转储设置5-6
表	5-9	网元单板通讯状态5-7
表	5-10	网管数据和网元数据是否一致5-8
表	5-11	如何关闭 E300 网管5-8
表	5-12	修改网管服务器系统时间5-9
表	5-13	不同用户登录同一网元5-9
表	5-14	合理设置告警属性
表	5-15	注意网管操作的返回结果5-10
表	5-16	同一时间只对单网元执行下载操作5-11
表	5-17	多网管环境下注意数据同步 5-11
表	5-18	网管多终端操作注意事项5-11
表	5-19	网元配置变更后及时备份网元配置数据库5-12
表	5-20	大数据量操作的注意事项5-12
表	5-21	影响业务的操作5-13
表	5-22	网元信息表
表	5-23	光放单板连接关系5-29
表	5-24	接入业务配置5-31
表	5-25	汇聚业务配置
表	5-26	连续速率业务配置5-33
表	5-27	时钟配置表
表	5-28	公务配置表

第1章 设备例行维护

1.1 设备维护

设备维护是指针对设备的运行状况和业务功能进行的维护操作, ZTE 中兴传输设备的维护包括例行维护和突发性维护。

1.1.1 例行维护

例行维护是对 ZTE 中兴传输设备的工作状态进行定期检查,检查的具体项目及间隔周期如表 1-1所示:

	维护周期	
设备检查 项目	设备声音告警检查	1天
	机柜指示灯观察	1天
	单板指示灯观察	半天
	风扇检查和定期清理	2周
	公务电话检查	2周
	业务检查	2周
网管检查	登录口令定期更改并记录备忘录	1月
项目	浏览树监视	1天
	拓扑图监视	1天
	告警监视	1天
	性能监视	1天
	查询系统配置	不定期
	查询用户操作日志	不定期
	报表打印	不定期

	备份数据	不定期
--	------	-----

在表 1-1所示的例行维护项目中 ,根据维护间隔周期的不同可以分 为日常例行维护项目和周期性例行维护项目。

1.日常例行维护

日常例行维护是指每天必须进行的维护项目。通过日常例行维护 项目,可以随时了解设备的运行情况,以便及时发现问题、解决 问题。

建议用户将日常例行维护制作为表格,对于维护过程中发现的问题可详细记录在表格中,以便及时维护和排除隐患,同时可以作 为日后工作的参考。

2. 周期性例行维护

周期性例行维护是指定期进行的维护,通过周期性维护,我们可 以了解设备的长期工作情况。如定期查询历史性能、对风扇防尘 网定期进行清洗。

建议用户将周期性例行维护项目制作为表格,对于维护过程中发现的问题可详细记录在表格中,以便及时维护和排除隐患,同时可以作为日后工作的参考。

对于系统配置、用户操作日志、报表打印、备份数据的不定期检查,可根据以上表格制作。

1.1.2 突发性维护

突发性维护是指因为传输设备故障、网络调整等带来的维护任务。 如:设备损坏、线路故障时需进行的维护,同时在例行维护中发 现并记录的突发事件也是突发性维护任务之一。突发性维护也称 为故障处理,对于突发性故障的处理方法及思路作为将在第五章 作详细说明。

1.2 设备的例行维护操作

1.2.1 设备声音告警检查

在日常维护中,设备的告警声更容易引起维护人员的注意,因此 在日常维护中应该保证设备告警时能够发出声音。

维护人员应定期检查子架上的截铃开关是否置于"Normal"状态, 保证告警声音常开;定期检查电源告警单元上的"BELL OFF"插 座和话机托架上截铃开关的电缆连接是否正常。如果设备告警外 接到列头柜,定期检查列头柜上的开关和接线是否正常。设备声 音告警检查的周期为每天一次。

1.2.2 机柜指示灯观察

机柜指示灯作为监视设备运行状态的途径之一,在日常维护中有 着非常重要的作用,通过机柜指示灯的状态可以观察设备是否有 告警及告警的级别。在机柜顶部中间,有红、黄、绿三个不同颜 色的指示灯。表 1-2为机柜上指示灯的含义。

表 1-2 机柜指示灯及含义

指示灯	名称	状态	
		亮	灭
红 灯	主要告 警指示	设备有主要告警 , 一般伴有声音告警	设备无主要告警
	灯		
黄	一般告	<u> </u>	<u> </u>
灯	警指示		· 反留尤一般古警

ZTE中兴

	灯		
绿	电源指	设备供电电源正常	设备供电电源中断
灯	示灯		

维护人员应每天查看机柜指示灯的状态,发现有红、黄灯亮时, 应进一步查看单板指示灯,并及时通知中心站的网管人员。在设 备正常工作时,机柜指示灯应该只有绿灯亮。

1.2.3 单板指示灯观察

只观察机柜顶部的告警指示灯,并不能准确了解设备的具体告警 信息,而这些告警预示着本端设备的故障隐患或者对端设备存在 故障,因此在观察了机柜指示灯后,还需观察设备各单板的告警 指示灯,来进一步了解设备运行状态。参见附录单板说明

1.2.4 风扇检查和定期清理

良好的散热是保证设备长期正常运行的关键,在机房的环境不能 满足清洁度要求时,风扇下部的防尘网很容易堵塞,造成通风不 良,严重时可能损坏设备。因此需要定期检查风扇的运行情况和 通风情况,保证风扇时刻处于正常运行状态;定期清理风扇的防 尘网,每月至少两次。

1.2.5 公务电话检查

公务电话对于系统的维护有着特殊的作用,是网络维护人员定位 故障、处理故障的重要通信工具,因此在日常维护中,维护人员 需要经常对公务电话作一些例行检查,以保证公务电话的畅通。

如果本站不是中心站,应定期从本站向中心站拨打公务电话,检 查从本站到中心站的公务电话是否能够打通,检查话音质量是否 良好,并让对方站拨打本站公务电话测试。如果本站是中心站, 应定期依次拨打各站点,检查公务电话质量。公务电话的检查为 每两周一次。

公务电话不通时,应采用其他联系方法确认被叫站点是否挂机; 如果被叫站点已经挂机,应由中心站通过网管检查配置数据、性 能、告警等,查找原因并解决。

1.2.6 业务检查—误码测试

误码特性测试是整个传输网业务长期稳定运行工作性能的一项测 试,在例行维护中,应在不影响现有运行业务的情况下,定期抽 测业务通道,以此来判断所有业务通道的性能是否正确。

1. 配置业务的两站之间若有空闲的业务通道,可以通过对空闲的 业务通道进行测试,检测两站间的业务通道质量。

2.配置业务的两站之间若没有空闲的业务通道,则可以考虑在业务量较小时,临时将用于保护的业务通道断开进行误码测试,检 测两站间的业务通道质量。

对于以上两种条件均不具备的,可以利用网管软件查询业务性能 和告警,检测两站间的业务通道质量。

1.3 网管的例行维护操作

网管是例行维护的一个重要工具。为保证设备安全可靠的运行, 网管所在局站的维护人员应每天通过网管对设备的运行状况进行 检查。

由于网管的重要性,我们专门列出一章,参见第5章。

第2章 维护操作规范

2.1 光时域反射计 OTDR

遇到线路光缆发生中断,线路衰耗突然增加等问题时,需要使用 OTDR 对光缆线路进行测试分析,此时请务必要把与该光缆相连 的 OBA、OPA、SDM 等带有收光模块的单板面板上的尾纤拔出, 使设备上的单板和光缆线路完全分离,避免测试过程中 OTDR 发 出的强光脉冲信号烧毁单板上的光检测器件(如:接收机的 APD 管)。

2.2 激光器关断

网管上可以对 OTU 激光器和 OA 泵的开关状态进行控制。但是:

激光器的开关状态严禁修改。避免关断正常业务中的 OTU 或 OA 单板光源。

光纤内部的激光束,会损害人的眼睛。进行光纤的安装、维 护等各种操作时,严禁肉眼靠近或直视光纤的接口端面。

2.3 防静电问题

安装和拆卸子框单板一定要带手套,防止手汗对单板防静电表面、 子框背面、子框内表面的金属镀膜层产生侵蚀,形成氧化层影响 美观。

在人体移动、衣服摩擦、鞋和底板的摩擦或手拿普通塑料制品等 情况下,人体会产生静电电磁场,并较长时间在人体上保存。因 此在接触设备,手拿插板、电路板,IC 芯片等之前,为防止人体 静电损坏敏感元器件,必须佩戴防静电手腕,并将防静电手环的 另一端良好接地。

2.4 电源线

1、在进行电源线的安装、拆除操作之前,必须关断电源开关。

2、在连接电缆之前,必须确认电缆标识是电源电缆,同时与实际 安装位置、安装电气参数相符合。

严禁电源线带电安装、拆除。电源线在接触导体的瞬间,会 产生电火花或电弧,可导致火灾、眼睛或身体伤害。

2.5 拔插尾纤

尾纤是连接设备外部光口或者 ODF 架法兰盘的一端光纤,并且两 头带有相应的接头。中兴 Unitrans®系列 WDM 光传输设备均采用 SC/PC 接头的尾纤。如图 2-1所示为 SC/PC 光接头:

图 2-1 SC/PC 光接头

2.5.1 拔尾纤

拔 SC/PC 接头尾纤时,用拔纤器卡住接头的塑胶端面,适度用力 将接头拔出,接头拔出后应立即用外挂的防尘帽将接头套上,防 止空气中的灰尘污染端面。

必须使用拔纤器拔纤,不能直接用手拔 SC/PC 接头尾纤。

2.5.2 插尾纤

安装 SC/PC 接头尾纤时,首先必须将接头表面的凸台对应好光口 法兰盘的凹坑,对准后适度用力推入,避免损伤光适配器的陶瓷 内管或者接头端面。将尾纤插入到底,听到"咔哒"声即可,表 示已经卡紧。

将光纤均匀用力地插入单板收、发光口

收发不能插反、插错

不要直视光口,以免激光灼伤眼睛

2.6 插拔衰耗器

中兴 Unitrans®系列 WDM 光传输设备均采用如图 2-2所示 SC 接头的高回损光衰耗器。

图 2-2 SC 光衰耗器

2.6.1 拔衰耗器

拔 SC 光衰耗器时,用拔纤器夹住衰耗器的塑胶端面,适度用力将 接头拔出,接头拔出后应立即用防尘帽将衰耗器两头套上,防止 空气中的灰尘污染端面。

必须使用拔纤器拔纤,不能直接用手拔 SC 光衰耗器

2.6.2 插衰耗器

安装 SC 光衰耗器时,首先必须将接头表面的凸台对应好光口法兰 盘的凹坑,对准后适度用力推入,避免损伤光适配器的陶瓷内管 或者接头端面。将 SC 光衰耗器插入到底,听到"咔哒"声即可, 表示已经卡紧。

不要直视光口,以免激光灼伤眼睛

2.7 拔插衰耗器和尾纤的顺序

如果光板的光口上同时需要安装尾纤和光衰耗器,按如下拔插顺 序操作:

2.7.1 插入衰耗器和尾纤的顺序

先在光口上插入 SC 光衰耗器,插入到底,直到听到"咔哒"声, 如果没有声音必须拔出重插。然后将尾纤插入 SC 光衰耗器,插入 到底,直到听到"咔哒"声,如果没有声音必须拔出重插。

2.7.2 拔出衰耗器和尾纤的顺序

如果光板光口上插了 SC 光衰耗器 ,同时 SC 光衰耗器上插了尾纤。 拔出顺序如下:使用拔纤器先拔出尾纤 , 然后再从光口上拔出 SC 光衰耗器。注意适度用力 , 接头拔出后应立即用外挂的防尘帽将 接头套上 , 防止空气中的灰尘污染端面。

概况起来一句话:先拔尾纤、再拔衰耗器。先插衰耗器,再插尾 纤。

拔插尾纤和衰耗器必须保证尾纤和衰耗器清洁、环境清洁。 准备好镜头纸或专用清洁器。如果污糟,必须及时清洁,不 能将污糟带入光板光口,否则就不好清洁了。

衰耗器一般加在光板的收口。但 ODU、OAD 的收口由于设 计原因,不能加衰耗器,必须把相关衰耗器加到上游光板的 发口上。

拔插光纤或者衰耗器会中断业务,进行相关光纤或者衰耗器 拔插操作前,务必将业务进行预先的调度处理,使拔插操作 不影响业务。

2.8 光纤和衰耗器的清洁

光纤头的污糟带来的反射对 DWDM 系统有严重影响,尤其是对长距离传输、一个复用段内有多个光中继 OLA 站点的情况,因此:

- 必须使用镜头纸或者专门的光纤清洁工具进行清洁。
- 每次拔出光纤、衰耗器再次插回时必须进行清洁工作

2.9 单板的拔插和更换

中兴 DWDM 系统中, OPA/OBA/OLA/OTUT/OTUR/OTUG/OTUF 单板为有源业务单板,有源业务单板的拔插和更换操作会中断业 务,无源单板只要保持光纤不断就不会中断业务。

进行有源业务单板更换和拔插操作时,务必将业务进行预先的调 度处理,使所要拔插的单板不承载业务。

2.9.1 单板的拔插

2.9.1.1 拔单板

单板各部件名称如图 2-3所示。

图 2-3 单板各部件名称

拔单板时,两手分别抓住上、下扳手,按下扳手簧片,两手同时 适度用力向上、下扳动单板扳手,使单板退出插槽后,将单板平 滑拉出子架即可。拔插单板的示意如图 2-4所示。

图 2-4 拔出单板前后的扳手扣位情况

2.9.1.2 插单板

- 首先确认单板插入的槽位是否正确
- 如果有多块单板需要插入,应该按照从左至右或者从右至左的顺序逐个插入。如果有假单板面板条挡住视线,应先卸下假单板面板条,待插入单板之后,再将假单板面板条重新装上。
- 插板时首先按下扳手簧片,把扳手放到水平位置,两手分别抓 住单板上、下扳手,将单板对准导轨小心推入,推入过程中应保 持单板垂直,可适度用力;在单板将要到位时将扳手上的卡口卡 住子架的前横梁,两手同时适度用力向下、上推压单板扳手,直 至单板扳手直立、簧片发出"咔哒"的锁定声,使单板插头完全 插入背板插座,此时单板面板应与子架单板区外框平齐。

进行单板更换操作随时都必须戴防静电手环。

名词解释:

单板浮插状态是指单板已经位于应插的槽位,并沿导轨滑入 槽位底部,但单板的插头和母板的插座还未能接触上;实际 上单板还处于未插入状态

2.9.2 单板的更换

首先要确认换上的单板和换下的单板是同种型号,如:
"OTUT1";单板型号的标识在单板面板条的下部,靠近下扳手处。

● 然后需要确认更换前后单板的硬件版本情况,如"B001100", 单板的硬件版本标识在单板的上部(右手拿单板面板条,面向单 板正面时)。

● 相同硬件版本的同种型号的单板可以互换,其余组合不能互换。 如不同硬件版本的同种型号的单板不可以互换,举例 B991100 的 OTUT1 更换 B001100 的 OTUT1;相同硬件版本的不同型号的单 板不可以互换,举例 B001100 的 OTUT1 更换 B001100 的 OTUT2。

● 对于所有设备、各种速率等级的光板都严格禁止带尾纤拔插。

 更换光板时注意先将尾纤拔出,更换后待单板正常运行后,再 将尾纤插回。

2.10 NCP 单板硬件复位

NCP 单板的单板面板条上有一个复位孔,内有按钮开关"RST", 使用小木棍或者软胶条伸入复位孔按一下此按钮,就会对 NCP 单 板进行一次复位,NCP 单板复位按钮如下图 2-5所示:

图 2-5 NCP 复位按钮

所有波分单板采用分散供电设计都支持带电拔出,可以带电更换, 但注意佩戴防静电手环。

OA、OUT 等有源单板复位会影响业务,导致业务中断等通信 故障。其余单板复位操作不影响业务。因此轻易不要对单板 进行复位操作。

2.11 告警声切除

在设备机柜的话机托架旁边有一个 BELL OFF 开关,此开关置于 "OFF '的位置,设备架顶蜂鸣器发出的声音告警就会被彻底关闭, 即使以后再发生危急告警,机柜也不会发出声音告警。

设备运行时,此开关要求置于"ON"的位置。

2.12 环回

2.12.1 环回概念

环回就是将通信通路的收、发直接相连。对通信通路的收、发直 连可以通过网管(软件)实现,也可以通过物理端口跳线直接连 接(硬件)实现。

2.12.2 OTUR 接口环回

从信号流向的角度来讲,硬件环回方向一般都是向设备内方向, 因此我们也称之为硬件自环。

光口的硬件自环是指用尾纤将光板的发光口和收光口连接起来以 达到信号环回的目的,硬件自环有两种方式,本板自环和交叉自 环。

本板自环的含义显而易见,将同一块光板上的光口"R"和"T" 用尾纤连接即可。以OTU6为例,本板自环是指用一根尾纤将本 板上收发两个光口连接起来,如将 IN1 和 OUT2 相连。

交叉自环是指用尾纤连接一个方向光板的"T"口和另一个方向光 板的"R"口或者一个方向光板的"R"口和另一个方向光板的"T" 口。如:OTU1R-OTU2T-OTU2R-OTU3T-OTU3R-...。

使用尾纤做光口硬件自环时,为防止光功率过载损伤光口, 必须在接收端光口之前加入光衰耗器控制光接口输入光功 率在该光口的接收机过载点和灵敏度之间

2.12.2.1 网管环回

环回测试功能对所选网元相应的单板设置或查询环回类型以及环 回的单板端口。用户可以选择支路远端、支路近端和取消环回; 群路远端、群路近端和取消环回。

对于 GEM 板只能选择对支路远端和群路近端进行环回。

2.13 中兴通讯传输光板操作规范

2.13.1 运行环境

设备运行的机房环境需清洁卫生,无灰尘;机房内要安装空调, 保证室内温度不高于摄氏 25 度;设备风扇必须开动。

2.13.2 单板拔插规范

经验表明,第一次接触中兴传输设备,就进行单板拔插操作,极 有可能将单板插座或扳手损坏。因此,未经专门培训人员严禁对 设备单板进行拔插。

2.13.3 芯片安装

一般单板上都有可以拔插的芯片。在安装芯片时,注意芯片上的 方向标记要和单板上对应芯片位置的方向标记一致,否则会烧毁 芯片。未经专门培训人员严禁对单板上的芯片进行拔插。

2.13.4 激光器

网管上激光器的开关状态严禁修改。避免关断正常业务中的光板 光源。

ZTE中兴

2.13.5 光功率测试

2.13.5.1 发送光功率测试

发光功率测试示意图如图 2-6所示,测试操作如下:

图 2-6 平均发送光功率测试

● 将光功率计的接收光波长设置为与被测光板的发送光波长相 同。

● 尾纤连接所要测试光板 T 接口。

此尾纤的另一端连接到光功率计的测试输入口,待接收光功率
稳定后,读出光功率值,即为该光板的发送光功率。

●测试一定要保证尾纤连接头清洁,连接装置耦合良好,包 括光板假面板条上法兰盘的连接和光功率计法兰盘的连接

●事先测试尾纤衰耗,确认使用尾纤是传输性能良好的尾纤

●对于光板使用单模和多模光接口的情况 , 应使用不同的尾 纤测试

- ●测试尾纤根据接口形状选用 FC/PC 或 SC / PC 连接头的尾 纤
- ●必须定期校准仪表,保证测试数据的准确和可靠

 对于在线业务的光板,测试采用 MON 口进行,测试到的 光功率是输入口光功率的 5%。输入光功率值通过计算得到, 即输入光功率=测试光功率/5%

2.13.5.2 接收光功率测试

将光功率计的接收光波长设置为与被测光波长相同。

在本站,选择连接相邻站发光口T的尾纤(此尾纤正常情况下连 接在本站光板的收光口上)。

将此尾纤连接到光功率计的测试输入口,待接收光功率稳定后, 读出光功率值,即为该光板的实际接收光功率。

 测试一定要保证尾纤连接头清洁,连接装置耦合良好, 包括光板假面板条上法兰盘的连接和光功率计法兰盘的连 接。

 事先测试尾纤的衰耗,确认使用尾纤是传输性能良好的 尾纤。

 对于光板使用单模和多模光接口的情况,应使用不同的 尾纤测试。 ● 测试尾纤应根据接口形状选用 FC/PC 或 SC / PC 连接头的尾纤。

2.13.6 误码测试

使用误码仪测试时,误码仪和被测设备的连接关系如图 2-7所示。

图 2-7 误码测试连接关系图

在使用误码仪进行测试时,将 OTUR 和 OTUT 用一段尾纤进行环回,误码仪的发端(T)接 OTUT,误码议的收端(R)接 OTUR。 正常情况下观察误码仪应无误码。

进行误码测试时,仪表需要良好的接地,测试期间尽量不要 开、关其他电器。

OTUR 和误码仪收光要在其过载光功率和接收灵敏度之间, 过强可能烧坏接收模块,过弱则可能会引起误码。
2.13.7 运输

单板在运输过程中,必须装入防静电袋内,然后再装入包装盒内。 若多块单板装入一个纸箱或纸袋内时,需在单板与单板之间插入 隔离板或塑料泡沫,以防运输中不慎颠坏。

2.13.8 防静电手环

在对单板操作时,请务必带上防静电手环。因为人体上的静电有时很高,很可能烧坏单板上的CMOS元件从而损坏单板。

2.14 识别 OA

OA 的最大输出光功率为 OA 型号的后两位:

举例:

OLA2220 的最大输出光功率为 20dBm,

OPA1712 的最大输出光功率为 12dBm,

OBA2520 的最大输出光功率为 20dBm。

OA 的标称增益为 OA 型号的前两位:

举例:

OLA2220 的增益为 22dB,

OPA1712 的增益为 17dB。

OBA2520 的增益为 25dB。

有些放大器的增益在网管已做了调整,可在网管的"维护"菜单下的"单板参数调整"下查看 OA 增益和调整值。

第3章 常见故障及处理

3.1 告警名称和归类

当 ZXMP M800 系统出现异常情况时,网元将上报网管大量的告 警信息,上报的每一条告警均与故障有直接联系,所以每一条告 警对维护人员来讲都是及时定位、排除故障的可靠依据。

通过 ZXONM E300 网管软件,可以监测到 DWDM 下列告警。

3.1.1 传输类

3.1.1.1 业务中断类告警

- OTU 板输入强光告警;
- OTU 板输入弱光告警;
- OTU 板输入无光告警(LOS);
- OTU 板输出光过强告警;
- OTU 板输出无光告警;
- OTU 板输出弱光告警;
- OA 板输入强光告警;
- OA 板输入无光告警;
- OA 板输入弱光告警;
- OA 板输出强光告警;
- OA 板输出无光告警;
- OA 板输出弱光告警;

- OMU 板总输出无光告警;
- OMU 板总输出弱光告警;
- ODU 板总输入无光告警;
- ODU 板总输入弱光告警;
- OAD 板下路、上路信道弱光告警;
- OAD 板下路、上路信道无光告警;
- OGMD4C 板 A 向、B 向输入光功率弱光告警;
- OGMD4C 板 A 向、B 向输入光功率无光告警;
- SDMT 板输出光功率弱光告警;
- SDMT 板输出光功率无光告警;
- OPCS 板 A 向、B 向工作通道输入光功率弱光告警;
- OPCS 板 A 向、B 向工作通道输入光功率无光告警;
- OP 板工作通道输入光功率弱光告警;
- OP 板工作通道输入光功率无光告警;
- OP 板保护通道输入光功率弱光告警;
- OP 板保护通道输入光功率无光告警;
- OPM 板信道输入无光告警;
- SRM 板输入光功率强光告警;
- SRM 板输入光功率弱光告警;
- SRM 板输入光功率无光告警;
- SRM 板输出光功率过强告警;

- SRM 板输出光功率弱光告警;
- SRM 板输出光功率无光告警;
- GEM 板输入光功率过强告警;
- GEM 板输入光功率弱光告警;
- GEM 板输入光功率无光告警;
- GEM 板输出光功率过强告警;
- GEM 板输出光功率弱光告警;
- GEM 板输出光功率无光告警;
- OTUF 板 FEC 幀丢失告警;
- OTU 板信号帧丢失告警;
- OTU 板信号不可用告警;
- OTU 板信号劣化告警;
- OTU 板信号丢失告警;
- SRM 板信号帧丢失告警;
- SRM 板信号不可用告警;
- SRM 板信号劣化告警;
- SRM 板信号丢失告警;
- GEM 板信号帧丢失告警;
- GEM 板信号不可用告警;
- GEM 板信号劣化告警;
- GEM 板信号丢失告警;

- OPM 板信道信噪比越限告警;
- OPM 板信道中心波长偏移告警。

3.1.1.2 业务误码类告警

- OTU 板 15 分钟 B1 误码个数越限告警;
- OTU 板 15 分钟误码秒越限告警;
- OTU 板 15 分钟严重误码秒越限告警;
- OTU 板 15 分钟不可用时间越限告警;
- OTU 板 24 小时 B1 误码个数越限告警;
- OTU 板 24 小时误码秒越限告警;
- OTU 板 24 小时严重误码秒越限告警;
- OTU 板 24 小时不可用时间越限告警;
- OTU10G 板纠错前误码个数越限告警;
- SRM 板 15 分钟 B1 误码个数越限告警;
- SRM 板 15 分钟误码秒越限告警;
- SRM 板 15 分钟严重误码秒越限告警;
- SRM 板 15 分钟不可用时间越限告警;
- SRM 板 24 小时 B1 误码个数越限告警;
- SRM 板 24 小时误码秒越限告警;
- SRM 板 24 小时严重误码秒越限告警;
- SRM 板 24 小时不可用时间越限告警;
- GEM 板 15 分钟 B1 误码个数越限告警;

- GEM 板 15 分钟误码秒越限告警;
- GEM 板 15 分钟严重误码秒越限告警;
- GEM 板 15 分钟不可用时间越限告警;
- GEM 板 24 小时 B1 误码个数越限告警;
- GEM 板 24 小时误码秒越限告警;
- GEM 板 24 小时严重误码秒越限告警;
- GEM 板 24 小时不可用时间越限告警;
- SRM 板 FEC 帧丢失告警(SRM41);
- SRM 板纠错前误码数越限告警(SRM41)。

3.1.1.3 监控中断类告警

- OSC 板 A 向、B 向信号不可用告警;
- OSC 板 A 向、B 向信号劣化告警;
- OSC 板 A 向、B 向信号丢失告警。
- 3.1.1.4 监控误码类告警
 - OSC 板 A 向、B 向 15 分钟误码秒越限告警;
 - OSC 板 A 向、B 向 15 分钟严重误码秒越限告警;
 - OSC 板 A 向、B 向 15 分钟不可用时间越限告警;
 - OSC 板 A 向、B 向 15 分钟误码计数越限告警;
 - OSC 板 A 向、B 向 24 小时误码秒越限告警;
 - OSC 板 A 向、B 向 24 小时严重误码秒越限告警;
 - OSC 板 A 向、B 向 24 小时不可用时间越限告警;

- OSC 板 A 向、B 向 24 小时误码计数越限告警;
- OSCF 板 CRC 错误报个数超值告警;
- OSCF 板报文丢失超值告警。

3.1.1.5 监控同步类告警

● OSC 板幀丢失告警。

3.1.1.6 传输类其他告警

- OSC 板接收光弱光告警;
- OSC 板接收光无光告警;
- OTU 板 J0 路径踪迹失配告警;
- SRM 板踪迹失配告警;
- GEM 板踪迹失配告警;
- OHP 板/OHPF 板时钟源丢失告警。

3.1.2 设备类

3.1.2.1 温度类设备告警

- OTU 板激光器温度差值越限告警;
- OMU AWG 工作温度过限告警;
- ODU AWG 工作温度过限告警;
- OA 板泵浦激光器 1,2 工作温度过限告警;
- OA 板环境温度过限告警;
- SWE 板环境温度过限告警。

3.1.2.2 电流类设备告警

- OTU 板激光器制冷电流过流告警;
- OTU 板制冷器电流过流告警;
- OA 板泵浦激光器 1,2 偏置电流过大告警;
- OA 板泵浦激光器 1,2 制冷电流过大告警。

3.1.2.3 设备类其他告警

- OHP 板通信链路建立失败告警;
- OTU 板激光器寿命终了告警;
- OA 板泵浦1,2寿命终了告警;
- SRM 板激光器寿命终了告警;
- GEM 板激光器寿命终了告警;
- FCB 板风扇故障告警;
- 板不在位告警;
- 插板告警;
- 板不匹配告警;
- 软件执行异常告警;
- SWE 板风扇故障告警。

3.1.3 外部环境告警

- 火警;
- 温度告警;
- 机房告警。

ZTE中兴

3.2 告警级别

当故障发生时,设备和网管上常常伴随大量的告警。由于高级别的告警常常会导致低级别的告警,因此故障发生时,必须先将所 有告警进行分类;首先对高级别的告警进行处理,然后观察低级 别的告警是否消失;如果没有消失,再对低级别的告警进行处理; 如果消失,说明低级别的告警是由高级别的告警引起的。

告警按级别分为如下四类:

- 严重告警(Critical):业务中断类告警,必须立即处理;
- 主要告警(Major):影响业务类告警,需要及时处理;
- 一般告警(Minor):有潜在业务影响的告警,需要安排处理;
- 警告(Warning):误操作导致的网管提示,不影响业务。

告警单板是指网管告警监视窗口中的 " 检测点单板 " ,该单 板指示告警 , 但告警来源不一定就是告警单板。

3.3 告警分析和处理

本章以列表的形式说明 ZXMP M800 系统能够产生的所有告警, 列表中对告警的可能原因和常用的处理方法做了简单的描述,在 维护过程中,对告警分析的同时结合对性能数据进行分析来排除 故障。

表 3-1至表 3-31为常见告警的原因及处理方法,在维护工作中可以 作为参考。

项目	描述
告警名称	OTU/SRM/GEM 板激光器输出无光告警
告警级别	严重告警
告警分类	业务中断类告警
告警解释	单板故障,激光器无输出
告警单板	OTU/SRM/GEM
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	1.激光器故障 2.环境温度过高或风扇故障,引起激光器温度过高, 单板保护性关激光器
处理方法	1.如果是保护倒换引起的(如 OTUG 板)就不需处理, 否则更换单板。 2.检查机架散热问题
备注	

表 3-1 OTU/SRM/GEM 板激光器输出无光告警

项目	描述
告警名称	OTU/SRM/GEM 板输入无光告警
告警级别	严重告警
告警分类	业务中断类告警
告警解释	OTU/SRM/GEM 板没有接收到 SDH 送来的光信号
告警单板	OTUT/SRM/GEM
告警指示	单板 :红色告警指示灯长亮 ,绿色运行指示灯正常慢闪 网管 : 打开网元安装窗口 , 单板上有红色告警标识
告警原因	SDH 或数据设备故障,光板没有发光到 DWDM 设备来 SDH 光板或数据设备到 DWDM 设备 OTU/SRM/GEM 板之间 的 光连接中断,可能是法兰、尾纤等光器件问题
处理方法	通过处理 SDH 设备或数据设备故障排除 仔细检查光连接 ,确定光连接中故障器件 ,更换排除故 障
备注	

表 3-2 OTU/SRM/GEM 板输入无光告警

项目	描述
告警名称	OTU/SRM/GEM 板输入无光告警
告警级别	严重告警
告警分类	业务中断类告警
告警解释	OTU/SRM/GEM 板没有接收到上游站点送来的光信号
告警单板	OTUR , OTUG/SRM/GEM
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢 闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	上游 ODU/OAD/OGMD/OPCS 单板和本单板之间的光 连接故障 上游 ODU/OAD/OGMD/OPCS 单板故障 ODU/OAD/OGMD/OPCS 单板的上游单板或者上游站点故 障
处理方法	检查 ODU/OAD/OGMD/OPCS 单板的相关波长输出光功率, 如果和 OTU 输入光功率一致,问题在 ODU/OAD/OGMD/OPCS 单板或者 ODU/OAD/OGMD/OPCS 单板 的上游单板或者站点,继续向上游检查排除故障 如果 ODU/OAD/OGMD/OPCS 相关波长的输出光功率正常, 问题在 ODU/OAD/OGMD/OPCS 单板和 OTU/SRM/GEM 之间 的光连接上,仔细检查 ODU/OAD/OGMD/OPCS 到 OTU/SRM/GEM 单板光连接间的法兰、尾纤等器件,排除 由于盘纤、器件损坏、污迹等因素导致的中断
备注	

表 3-3 OTU/SRM/GEM 板输入无光告警

项目	描述
告警名称	OTU/SRM/GEM 板输出弱光告警
告警级别	主要告警
告警分类	业务中断类告警
告警解释	单板故障,激光器弱光输出
告警单板	OTU/SRM/GEM
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢 闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	激光器故障
处理方法	更换单板
备注	

表 3-4 OTU/SRM/GEM 板输出弱光告警

项目	描述
告警名称	OTU/SRM/GEM 板输入弱光告警
告警级别	主要告警
告警分类	业务中断类告警
告警解释	OTU/SRM/GEM 板接收到 SDH 送来的光信号过弱
告警单板	OTUT/SRM/GEM
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢 闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	SDH 设备故障,SDH 光板发到 DWDM 设备的光过弱 SDH 光板到 DWDM 设备 OTU/SRM/GEM 板之间的光连接故 障,可能是法兰、尾纤等光器件问题
处理方法	通过处理 SDH 设备故障排除,仔细检查光连接,确定 光连接中故障器件,更换排除故障
备注	

表 3-5 OTU/SRM/GEM 板输入弱光告警

项目	描述
告警名称	OTU/SRM/GEM 板输入弱光告警
告警级别	主要告警
告警分类	业务中断类告警
告警解释	OTU/SRM/GEM 板接收到 SDH 送来的光信号过弱
告警单板	OTUG , OTUR/SRM/GEM
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常 慢闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	上游 ODU 单板和本单板之间的光连接故障 上游 ODU 单板故障 ODU 单板的上游单板或者上游站点故障
处理方法	检查 ODU/OAD/OGMD/OPCS 单板的相关波长输出光功 率,如果和 OTU/SRM/GEM 输入光功率一致,问题在 ODU/OAD/OGMD/OPCS 单板或者 ODU/OAD/OGMD/OPCS 单 板的上游单板或者站点,继续向上游检查排除故障 如果 ODU/OAD/OGMD/OPCS 相关波长的输出光功率正 常,问题在 ODU/OAD/OGMD/OPCS 单板和 OTU/SRM/GEM 之间的光连接上,仔细检查 ODU/OAD/OGMD/OPCS 到 OTU/SRM/GEM 单板光连接间的法兰、尾纤等器件,排 除由于盘纤、器件损坏、污迹等因素导致的额外衰 耗
备注	

表 3-6 OTU/SRM/GEM 板输入弱光告警

项目	
告警名称	OA 板输入无光告警
告警级别	严重告警
告警分类	业务中断类告警
告警解释	OA 板没有接收到上游送来的光信号
告警单板	0A
告警指示	单板:红色告警指示灯长亮 ,绿色运行指示灯正常慢 闪 网管:打开网元安装窗口 , 单板上有红色告警标识
告警原因	上游单板故障,无光输出 上游光缆线路故障 和上游单板之间连接的尾纤或者适配器件故障 若为 OPA/OLA,还可能是 1550/1510 的分波器故障
处理方	通过网管检查上游单板的输出光功率 如果输出光功率正常,故障点在上游单板和 OA 之间 的光连接上,如果相互使用尾纤连接,检查尾纤或者 适配器件;如果相互使用光缆连接,使用 OTDR 定位 故障 如果输出也是无光输出告警,问题还在上游,继续向 上查找 更换 OPA/OLA 单板
备注	

表 3-7 OA 板输入无光告警

项目	描述
告警名称	OA 板输入弱光告警
告警级别	主要告警
告警分类	业务中断类告警
告警解释	OA 板接收到上游送来的光信号过弱
告警单板	OA
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢 闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	上游单板故障,弱光输出 上游光缆线路故障 和上游单板之间连接的尾纤或者适配器件故障 为 OPA/OLA,还可能是 1550/1510 的分波器插损变 大
处理方法	通过网管检查上游单板的输出光功率 如果输出光功率正常,故障点在上游单板和 OA 之间 的光连接上,如果相互使用尾纤连接,检查尾纤或者 适配器件;如果相互使用光缆连接,使用 OTDR 定位 故障 如果输出也是弱光输出告警,问题还在上游,继续向 上查找 擦拭光纤连接头或更换 OPA/OLA 单板
备注	

表 3-8 OA 板输入弱光告警

表 3-9 OA 板	输出无光告警
------------	--------

项目	
告警名称	OA 板输出无光告警
告警级别	严重告警
告警分类	业务中断类告警
告警解释	OA 向下游没有送出光信号
告警单板	OA
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢 闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	OA 单板故障 若 OA 泵浦温度偏移超过 ± 5 会保护性关泵 上游单板故障,弱光输出 上游光缆线路故障 和上游单板之间连接的尾纤或者适配器件故障
处理方法	首先通过网管检查 OA 的输入光功率是否过限 ,如果没 有 , OA 单板故障 , 更换 OA 单板。如果 OA 的输入光功 率报无光输入 , 问题在上游单板 检查机架散热和风扇 继续使用网管检查上游单板的输出光功率 如果输出光功率正常 ,故障点在上游单板和 OA 之间的 光连接上 , 如果相互使用尾纤连接 , 检查尾纤或者适 配器件 ;如果相互使用光缆连接 ,使用 OTDR 定位故障 如果输出也是无光输出告警 , 问题还在上游 , 继续向 上查找
备注	

项目	描述
告警名称	OA 板输出光功率过弱告警
告警级别	主要告警
告警分类	业务中断类告警
告警解释	OA 向下游送出的光信号过弱
告警单板	OA
告警指示	单板:红色告警指示灯长亮 , 绿色运行指示灯正常慢 闪
	网管:打开网元安装窗口,单板上有红色告警标识
告警原因	OA 单板故障 上游单板故障,弱光输出 上游光缆线路故障 和上游单板之间连接的尾纤或者适配器件故障
处理方法	首先通过网管检查 OA 的输入光功率是否过限,如果没 有,OA 单板故障,更换 OA 单板。如果 OA 的输入光功 率报弱光输入,问题在上游单板 继续使用网管检查上游单板的输出光功率 如果输出光功率正常,故障点在上游单板和 OA 之间的 光连接上,如果相互使用尾纤连接,检查尾纤或者适 配器件;如果相互使用光缆连接,使用 OTDR 定位故障 如果输出也是弱光输出告警,问题还在上游,继续向 上查找
备注	

表 3-10 OA 板输出光功率过弱告警

项目	描述
告警名称	OMU 板主输出无光告警
告警级别	严重告警
告警分类	业务中断类告警
告警解释	OMU 向下游没有送出光信号
告警单板	OMU
告警指示	单板:红色告警指示灯长亮 , 绿色运行指示灯正常慢 闪 网管:打开网元安装窗口 , 单板上有红色告警标识
告警原因	OMU 单板故障 上游 OTU 单板故障,无光输出 OMU 和上游 OTU 单板之间连接的尾纤或者适配器件 故障
处理方法	如果 OTU 各波长输出光功率正常,那么故障有两种可 能:OMU 单板故障,OTU 到 OMU 的光连接有故障。到达 现场测试 OMU 各波长的输入光功率和 OTU 各波长输出 光功率是否一致。若是,OMU 故障。若不是,仔细检查 OTU 到 OMU 单板光连接间的法兰、尾纤等器件,排除由 于盘纤、器件损坏、污迹等因素导致的中断故障 如果 OTU 相应波长输出无光,故障在 OTU。更换 OTU 单板即可
备注	

表 3-11 OMU 板主输出无光告警

项目	描述
告警名称	OMU 板主输出弱光告警
告警级别	主要告警
告警分类	业务中断类告警
告警解释	OMU 向下游送出光信号过弱
告警单板	ОМИ
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	OMU 单板故障 上游 OTU 单板故障,弱光输出 OMU 和上游 OTU 单板之间连接的尾纤或者适配器件故 障
处理方法	如果 OTU 各波长输出光功率正常,那么故障有两种可能: OMU 单板故障,OTU 到 OMU 的光连接有故障。到达现场测 试 OMU 各波长的输入光功率和 OTU 各波长输出光功率是 否一致。若是,OMU 故障。若不是,仔细检查 OTU 到 OMU 单板光连接间的法兰、尾纤等器件,排除由于盘纤、器 件损坏、污迹等因素导致的中断故障 如果 OTU 相应波长输出弱光,故障在 OTU。更换 OTU 单 板即可
备注	

表 3-12 OMU 板主输出弱光告警

项目	描述
告警名称	ODU 板总输入无光告警
告警级别	严重告警
告警分类	业务中断类告警
告警解释	ODU 没有接收到上游送来的光信号
告警单板	ODU
告警指示	单板:红色告警指示灯长亮 , 绿色运行指示灯正常慢闪 网管:打开网元安装窗口 , 单板上有红色告警标识
告警原因	上游 OPA 单板故障,无光输出 和上游 OPA 单板之间连接的尾纤或者适配器件故障
处理方法	检查 OPA 单板的输出光功率 如果也报无光输出,问题在 OPA 单板或者 OPA 单板的上 游,继续向上游查障 如果 OPA 单板的输出光功率正常,问题在 OPA 单板和 ODU 之间的光连接上,仔细检查 OPA 到 ODU 单板光连接间的 法兰、尾纤等器件,排除由于盘纤、器件损坏、污迹等 因素导致的中断
备注	

表 3-13 ODU 板总输入无光告警

项目	描述
告警名称	ODU 板总输入弱光告警
告警级别	主要告警
告警分类	业务中断类告警
告警解释	ODU 接收到上游送来的光信号过弱
告警单板	ODU
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	上游 OPA 单板故障,弱光输出 上游 OPA 单板之间连接的尾纤或者适配器件故障
处理方法	检查 OPA 单板的输出光功率 如果也报弱光输出,问题在 OPA 单板或者 OPA 单板的上 游,继续向上游查障 如果 OPA 单板的输出光功率正常,问题在 OPA 单板和 ODU 之间的光连接上,仔细检查 OPA 到 ODU 单板光连接间的 法兰、尾纤等器件,排除由于盘纤、器件损坏、污迹等 因素导致的额外衰耗
备注	

表 3-14 ODU 板总输入弱光告警

项目	描述
告警名称	 0DU 板通道 1(2,3…32)无光告警
告警级别	严重告警
告警分类	业务中断类告警
告警解释	ODU 板通道 1(2,3…32)向下游无光信号送出
告警单板	ODU
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	ODU 单板故障 上游 OPA 单板故障,无光输出 上游 OPA 单板之间连接的尾纤或者适配器件故障
处理方法	首先通过网管检查 ODU 的总输入光功率是否无光,如果 光功率正常,ODU 单板故障,更换 ODU 单板。如果 ODU 的 总输入光功率报无光输入,问题在上游 OPA 单板或者光 连接 继续使用网管检查上游单板 OPA 的输出光功率 如果输出光功率正常,故障点在上游 OPA 单板和 ODU 之 间的光连接上,仔细检查尾纤或者适配器件,排除故障 如果输出也是无光输出告警,问题还在上游,继续向上 查找
备注	

表 3-15 ODU 板通道 1 (2, 3...32) 无光告警

项目	描述
牛敵勾爭	OTU/SRM/GEM 板 B1 误码过限告警提示、OTU/SRM/GEM 板 B1
	误码秒计数过限告警提示、OTU/SRM/GEM 板 B1 严重误码秒
口言行你	计数过限告警提示、B2 误码个数过限告警、B1 误码个数
	过限告警
告警级别	严重告警
告警分类	业务误码类告警
告警解释	OTU/SRM/GEM 接收到误码
告警单板	OTU/SRM/GEM
牛数七一	单板:红色告警指示灯长亮,绿色运行指示灯正常慢闪
告警指示	网管:打开网元安装窗口 , 单板上有红色告警标识
	ト波 OTU/SPM/GEM 岩不自
	土崩 010/50m/GEM 版不良
	上游 UTU/SRM/GEM 到本站 UTU/SRM/GEM 之间的尤连接敌
告警原因	障:OMU/OA/ODU/OAD/OGMD/SDM 光缆线路/连接尾纤/适配
	器/衰耗器等故障
	OTU/SRM/GEM 板内部高频电缆线松脱(OTU10G 板上没有高
	频电缆连接)

表 3-16 OTU/SRM/GEM 板误码过限告警提示

ZTE中兴

处理方法	首先必须进行中继段问题分段,定位故障在哪个中继段, 检查上游 OTU/SRM/GEM 板是否也有误码过限告警提示,如 果有,继续向上游查找,如果没有转到步骤2 可以定位问题在该 OTU/SRM/GEM 和它上游站点的 OTU/SRM/GEM 之间,通过采集两个 OTU/SRM/GEM 板之间各 单板光功率情况来定位故障 如果各单板的输入和输出光功率正常(相对于开局记录 值),问题在发端或者收端 OTU/SRM/GEM 板本身,通过备 件替换办法定位故障 OTU/SRM/GEM 板,更换即可 如果各单板的输入和输出光功率有明显变化(弱光告警), 转相关单板告警处理流程 特别地,如果系统中只有一个站点的某块 OTU/SRM/GEM 板 狂报误码过限告警,问题在该 OTU/SRM/GEM 板误报误码, 是高频电缆线松脱导致,更换该单板或者拧紧高频电缆线 即可
备注	

项目	描述
告警名称	OTUF 和 OTU10G 板 FEC 幀丢失告警
告警级别	严重告警
告警分类	业务中断类告警
告警解释	没有接收到上游送来的信号幀结构
告警单板	OTUF , OTU10G
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	上游 OTUF(OTU10G)发不良 本站 OTUF(OTU10G)收不良 上游到本站之间的光连接故障:OMU/OA/ODU/光缆线路/ 连接尾纤/适配器/衰耗器等故障
处理方法	问题就在本地 OTUF 和上游站点的 OTUF 之间,通过采集两 OTUF 板之间各单板光功率情况来定位故障 如果各单板的输入和输出光功率正常(相对于开局记录 值),问题在发端或者收端 OTUF 板本身,通过备件替换 办法定位故障 OTUF 板,更换即可 如果各单板的输入和输出光功率有明显变化(弱光告警), 转相关单板告警处理流程
备注	

表 3-17 OTUF 板 FEC 幀丢失告警

项目	描述
告警名称	OTU/SRM/GEM 板信号失锁告警
告警级别	主要告警
告警分类	业务中断类告警
生敬砚驭	OTU/SRM/GEM 没有分离出接收到的时钟信号,导致信号失
古誉胜祥	锁
告警单板	OTU/SRM/GEM
告警指示	单板:红色告警指示灯长亮 , 绿色运行指示灯正常慢闪 网管:打开网元安装窗口 , 单板上有红色告警标识
告警原因	上游 OTU/SRM/GEM 发不良 本站 OTU/SRM/GEM 收不良
处理方法	问题在发端或者收端 OTU/SRM/GEM 板本身 ,通过备件替换 办法定位故障 OTU/SRM/GEM 板,更换即可
备注	

表 3-18 OTU/SRM/GEM 板信号失锁告警

项目	描述
告警名称	OSC 板 A 向信号中断、OSC 板 B 向信号中断告警
告警级别	主要告警
告警分类	监控中断类告警
告警解释	OSC 板 A 向或者 B 向没有收到上游 OSC 送来的信号
告警单板	OSC
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	OSC 故障 OPA 故障 OBA 故障 OLA 故障 光纤连接故障 光缆线路故障
处理方法	首先排除主光通道问题:检查本站 OSC 上游方向的 OPA 或者 OLA 板输入或者输出是否有无光或者弱光告警 如果有相关告警,问题在上游主光通道上,使用前面提 到的相关业务告警处理流程处理 如果没有,问题在上游 OSC 的发、本地 OSC 收或者相关 光连接上。检查上游 OSC 的发、本地 OSC 收或者相关 光连接上。检查上游 OSC 发光是否正常,如果不正常, 更换上游 OSC 板。如果正常,继续检查上游 OSC 到 OBA 或者 OLA 的光连接情况,不正常进行处理。如果连接正 常,继续向下游检查本站 OPA 或者 OLA 到 OSC 的光连接 情况,不正常进行处理。如果连接正常,继续检查本站 OSC 的输入光功率,如果正常,更换本站 OSC 板即可
备注	

表 3-19 OSC 板 A/B 向信号中断告警

表 3-20	OSC 板 A/B 向误码类告警
--------	------------------

项目	描述
告警名称	OSC 板 A 向误码告警、OSC 板 B 向误码告警、OSC 板 A 向误 码块 15 分钟性能超值事件、OSC 板 A 向误码秒 15 分钟性能 超值事件、OSC 板 A 向严重误码秒 15 分钟性能超值事件、 OSC 板 A 向不可用秒 15 分钟性能超值事件、OSC 板 B 向误码 块 15 分钟性能超值事件、OSC 板 B 向误码秒 15 分钟性能超 值事件、OSC 板 B 向严重误码秒 15 分钟性能超值事件、OSC 板 B 向不可用秒 15 分钟性能超值事件、OSC 板 A 向误码块 24 小时性能超值事件、OSC 板 A 向误码秒 24 小时性能超值 事件、OSC 板 A 向严重误码秒 24 小时性能超值事件、OSC 板 A 向不可用秒 24 小时性能超值事件、OSC 板 B 向误码块 24 小时性能超值事件、OSC 板 B 向误码秒 24 小时性能超值事 件、OSC 板 B 向严重误码秒 24 小时性能超值事件、OSC 板 B 向不可用秒 24 小时性能超值事件
告警级别	严重告警
告警分类	监控误码类告警
告警解释	OSC 板 A 向或者 B 向收到误码
告警单板	OSC
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	OSC 故障 OPA 故障 OBA 故障 OLA 故障 光纤连接故障 光缆线路故障
	首先排除主光通道问题:检查本站 OSC 上游方向各单板的输

处理方法	入和输出光功率相对于开局时数据有无明显变化 如果有相关告警,问题在上游主光诵道上,转入相关业务告
	警处理流程处理
	如果没有,问题在上游 0SC 的发、本地 0SC 收或者相关光连
	接上。检查上游 0SC 发光是否正常,如果不正常,更换上游
	OSC 板。如果正常,继续检查上游 OSC 到 OBA 或者 OLA 的光
	连接情况,不正常进行处理。如果连接正常,继续向下游检
	查本站 OPA 或者 OLA 到 OSC 的光连接情况 不正常进行处理。
	如果连接正常,继续检查本站 OSC 的输入光功率,如果正常,
	更换本站 OSC 板即可
备注	

项目	描述
告警名称	OSC 板 A 向幀失步、OSC 板 B 向幀失步告警
告警级别	
告警分类	监控同步类告警
告警解释	
告警单板	0SC
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	配置问题 单板间光纤连接故障 OSC 单板故障
处理方法	首先在网管上检查时钟配置,保证全网监控系统只有一 个内时钟,其余网元 0SC 采用抽时钟方式 通过监测各站与监控通道相关的单板(0A/0SC)收发光 功率情况来判断单板间光纤连接关系正常,排除光纤连 接因素导致的两个或者多个内时钟情况,导致幀失步性 能 通过上面操作仍然有幀失步性能,问题在 0SC 单板,通 过备件更换办法来确定故障 0SC 单板是在本地还是上 游,更换即可
备注	

表 3-21 OSC 板 A/B 向幀失步告警

项目	
告警名称	OTU/SRM/GEM 板输入过载告警
告警级别	
告警分类	传输类其他告警
	OTU/SRM/GEM 板收到上游方向过来的光信号功率过大,
古營所释	在过载点以上
告警单板	OTU/SRM/GEM
	单板:红色告警指示灯长亮,绿色运行指示灯正常慢闪
古 警指不	网管:打开网元安装窗口,单板上有红色告警标识
告警原因	上游光功率过高
处理方法	通过加衰耗器的办法来控制和处理。对于 OTUT ,在收 SDH 的光口加合适的衰耗器。对于 OTUG 和 OTUR ,在 OPA 的 收口加合适的衰耗器
备注	

表 3-22 OTU/SRM/GEM 板输入过载告警

项目	描述
告警名称	OSC 板 A/B 向接收功率过限告警
告警级别	严重告警
告警分类	传输类其他告警
告警解释	OSC 板 A/B 向接收功率过限
告警单板	OSC
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	OSC 故障 OPA 故障 OBA 故障 OLA 故障 光纤连接故障 光缆线路故障
处理方法	排除主光通道问题:检查本站 OSC 上游方向的 OPA 或者 OLA 板输入或者输出光功率是否过限,如果 OPA 或者 OLA 板有相应的性能过限指示,问题在上游主光通道上,先通 过网管向上游逐级检查单板输入和输出光功率情况,定位 故障点,然后前往故障点检查光连接并核实光功率。如果 没有,问题在上游 OSC 的发或者本地 OSC 收上 定位站点和单板:检查上游 OSC 发光是否正常,上游 OSC 到 OBA 或者 OLA 的光连接情况,本站 OPA 或者 OLA 到 OSC 的光连接情况,本站 OSC 的输入光功率,上游 OBA/OLA 的 1550/1510 合波器以及本站 OPA/OLA 的 1550/1510 分波 器的插损是否正确。定位问题最终原因并做更换和处理
备注	

表 3-23 OSC 板 A/B 向接收功率过限告警

项目	描述
告警名称	OTU/SRM/GEM 板 JO 路径踪迹失配告警
告警级别	一般告警
告警分类	传输类其他告警
告警解释	OTU/SRM/GEM 板接收到上游送来信号的 JO 路径踪迹字节 失配,一般发生在 OTUT/SRM/GEM,SDH 送来的 JO 和 OTUT/SRM/GEM 设置的 JO 不匹配,由于 OTUT/SRM/GEM 不处 理 JO,所有该告警不会影响业务畅通
告警单板	OTU/SRM/GEM
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	SDH 信号幀结构中的 J0 和 OTUT/SRM/GEM 设置的 J0 不匹配
处理方法	修改 SDH 设备送出的 J0 字节,使它和 DWDM 设备 OTUT/SRM/GEM 的 J0 设置一致 修改 DWDM 设备 OTUT/SRM/GEM 的 J0 设置,使它和 SDH 设备送出的 J0 字节一致
备注	

表 3-24 OTU/SRM/GEM 板 JO 路径踪迹失配告警

表	3-25	超温和温度过限告警
---	------	-----------

项目	描述
告警名称	OTU/SRM/GEM 板激光器超温告警、OMU AWG 工作温度过限告
	警、ODU AWG 工作温度过限告警、OA 板泵 1 超温告警、OA
	板泵2超温告警
告警级别	严重告警
告警分类	温度类设备告警
	单板内部或者器件内部温度过高 , 注意所有器件正常工作
告警解释	的温度是 25 。如果温度偏移 5 , 0TU 激光器、0A 泵
	都会自动关闭
告警单板	OTU/SRM/GEM , OMU , ODU , OA , OSC
牛殻七二	单板:红色告警指示灯长亮,绿色运行指示灯正常慢闪
舌 警指示	网管:打开网元安装窗口,单板上有红色告警标识
告警原因	环境温度过高 机架风扇故障 报障的单板故障
处理方法	高温环境下请使用空调保证机房温度环境 更换故障风扇 更换报障的单板
备注	
表 3-26 电流过大告警

项目	
告警名称	OTU/SRM/GEM 板激光器制冷电流过大告警、OTU/SRM/GEM 板激光器偏流过大告警、OA 板泵 1 偏置电流过大告警、OA 板泵 2 偏置电流过大告警、OA 板泵 1 制冷电流过大告警、 OA 板泵 2 制冷电流过大告警
告警级别	主要告警
告警分类	电流类设备告警
告警解释	器件偏置电流、制冷电流过大
告警单板	OTU/SRM/GEM , OA
告警指示	单板:红色告警指示灯长亮,绿色运行指示灯正常慢闪 网管:打开网元安装窗口,单板上有红色告警标识
告警原因	门限设置问题 单板故障 外部电源问题
处理方法	开局时一定要将原始电流数据记录并备份下来,正确设置 好偏流的上、下限 如果上、下限电流值设置正确,此时上报该性能,说明单 板器件老化或者故障,更换单板即可。单板上现在有激光 器寿命终了告警 注意检查设备外部电源的状态,保证设备工作在额定电源 工作范围
备注	

项目	描述
告警名称	板不在位告警
告警级别	严重告警
告警分类	设备类其他告警
告警解释	指示该槽位做了单板配置,但该槽位没有监测到单板
告警单板	NCP
告警指示	网管 : 打开网元安装窗口 , 网元上有红色告警标识 , 相应 槽位有黑点指示
告警原因	该槽位未插单板 插入单板的单板程序故障,单板未跑起来 备板插针或单板插座故障,NCP 无法监测到单板的存在
处理方法	插入和配置类型相同的单板 更换单板或者单板程序 仔细检查插针是否弯曲、折断,更换后备板或者单板
备注	

表 3-27 板不在位告警

项目	描述
告警名称	插板告警
告警级别	一般告警
告警分类	设备类其他告警
告警解释	指示该槽位未做单板配置,但该槽位监测到有单板存在
告警单板	NCP
告警指示	网管:打开网元安装窗口 , 网元上有红色告警标识 , 相应 槽位有黑点指示
告警原因	在未配置单板的槽位插入了单板
处理方法	将该单板拔出即可
备注	

表 3-28 插板告警

项目	描述
告警名称	板不匹配告警
告警级别	主要告警
告警分类	
告警解释	指示该槽位做了单板配置,但该槽位插入的单板不是配置 类型或者软件版本不同
告警单板	NCP
告警指示	网管:打开网元安装窗口 , 网元上有红色告警标识 , 相应 槽位有黑点指示
告警原因	配置错误 插板错误
处理方法	修改配置 更换单板为配置类型
备注	

表 3-29 板不匹配告警

项目	描述
告警名称	火警、温度告警、机房告警
告警级别	主要告警
告警分类	环境监控告警
告警解释	如果采用了中兴通讯配套的环境监控终端,可以采集到火 灾、水灾等机房环境恶劣变化信息,将设备外部告警通过 网管反映出来
告警单板	NCP
告警指示	单板:红色告警指示灯长亮
告警原因	机房环境异常
处理方法	前往现场处理
备注	

表 3-30 环境监控告警

项目	描述
告警名称	风扇故障告警
告警级别	主要告警
告警分类	设备类其他告警
告警解释	指示风扇故障
告警单板	FCB
告警指示	单板:红色告警指示灯长亮
告警原因	风扇故障
处理方法	更换单板
备注	

表 3-31 风扇故障告警

第4章 常见性能及处理

4.1 性能名称和归类

ZXMP M800 系统的网管 ZXONM E300 可以检测上报系统和单板的性能量,利于对系统进行维护和故障定位。

在 ZXONM E300 网管软件中,可以管理的 DDWDM 性能参数如 下面所列:

4.1.1 光通道层性能监测

- 信道光功率
- 信道信噪比
- 信道光中心波长值 Wavelength (配置 OPM 板时)

Input optical power

Output optical power

Laser bias current

Laser temperature offset

TEC current

- 输入光功率
- 输出光功率
- 激光器偏置电流
- 激光器温度偏移值
- 制冷器电流
- B1 误码
- B1 误码秒
- B1 严重误码秒
- B1 不可用时间
- B2 误码个数

4.1.2 光复用段层性能监测

- 总输入光功率
- 总输出光功率

4.1.3 光传送层性能监测

- 输入光功率
- 输出光功率
- 泵浦激光器温度
- 泵浦激光器偏置电流
- 泵浦激光器制冷电流
- 泵浦输出光功率
- 每通路光信噪比 时)

4.1.4 光监控通路性能监测

- 输入光功率 Input power
- 背景误码 EB
- 误码秒 ES
- 严重误码秒 SES
- 不可用时间 UAS
- 帧丢失次数 LOF

Total input optical power

Total output optical power

- Input optical power
- Output optical power
 - Pump laser temperature
 - Pump laser bias current
- Pump laser TEC current
- Pump laser output optical power
- Channel OSNR (配置 OPM 板

4.1.5 OADM 性能监测参数

- 每通路光信噪比 OSNR per channel (配置 OPM 板时)
- 上路支路输入光功率 Add tributary input optical power
- 下路支路输出光功率 Drop tributary output optical power

4.2 性能分类

从上面的性能信息可以看到,性能主要分为五类:光功率性能、 误码性能、温度性能、偏流性能、OPM 监控的性能。

4.2.1 光功率性能

- OTU 输出光功率(dBm);
- OTU 板 (APD 接收模块) 输入光功率 (dBm);
- OTU 板 (PIN 接收模块) 输入光功率 (dBm);
- OBA 输入光功率(dBm);
- OBA 输出光功率(dBm);
- OPA 输入光功率(dBm);
- OPA 输出光功率(dBm);
- OLA 输入光功率 (dBm);
- OLA 输出光功率(dBm);
- ODU 板输入总光功率(dBm);
- OMU 板输出总光功率(dBm);

- OAD 板支路1(2,3,...8)光功率值(dBm);
- OGMD4C 板输入光功率(dBm);
- SDMR 板输入光功率(dBm);
- SDMT 板输出光功率(dBm);
- OP 板工作通道输入光功率(dBm);
- OP 板保护通道输入光功率(dBm);
- OPCS 板 A 向工作通道输入光功率(dBm);
- OPCS 板 B 向工作通道输入光功率(dBm);
- OPM 板通道光功率(dBm);
- SRM 板群路端输入光功率(dBm);
- SRM 板群路端输出光功率(dBm);
- GEM 板群路端输入光功率(dBm);
- GEM 板群路端输出光功率(dBm);
- OSC/OSCF 板 A 向接收光功率(dBm);
- OSC/OSCF 板 B 向接收光功率(dBm)。

4.2.2 误码性能

● OTU 板 B1 误码(误码个数、误码秒计数、严重误码秒计数)、 误码率、FEC 纠正的误码数、FEC 纠错前的误码率、FEC 不可纠 正的误码数(OTUF 板)、FEC 不可纠正的帧(OTU10G 板);

● SRM 板群路端接收器:B1 误码(误码个数、误码秒、严重误码 秒、不可用时间)、B2 误码个数、FEC 纠正的误码数(SRM41), FEC 纠错前误码率(SRM41),FEC 不可纠正的误码数(SRM41), FEC 不可纠正的帧(SRM41);支路接收端:15 分钟 B1 误码个数;

● GEM 板群路端接收器:B1 误码(误码个数、误码秒、严重误码秒、不可用时间)、B2 误码个数、接收总数据包数、接收总字节数、接收 CRC 错包数、发送总数据包数、发送总字节数;

● OSC 板 A 向和 B 向误码性能(背景误码、误码秒、严重误码秒、 不可用时间)、CRC 错误包个数(OSCF 板)、报文丢失个数(OSCF 板)、接收数据包数(OSCF 板)、发送数据包数(OSCF 板)。

4.2.3 温度性能

- OTU 板单板环境温度;
- OTU 板激光器温度偏移值;
- OA 板泵浦激光器 1 温度;
- OA 板泵浦激光器 2 温度;
- OA 板环境温度;
- OMU 板 AWG 工作温度(使用有源 AWG);
- ODU 板 AWG 工作温度(使用有源 AWG);
- SRM 板激光器温度值;
- GEM 板激光器温度值。
- SWE 单板环境温度值。
- FCB 板风扇控制板温度值。

4.2.4 电流性能

● OTU 板激光器偏置电流(mA);

- OTU 板激光器制冷电流(A);
- OA 板泵浦激光器1偏置电流(A);
- OA 板泵浦激光器 2 偏置电流(A);
- OA 板 TEC1 制冷电流值(A);
- OA 板 TEC2 制冷电流值(A);
- OMU 板 AWG 工作电流值(使用有源 AWG);
- ODU 板 AWG 工作电流值(使用有源 AWG);
- SRM 板激光器偏置电流值;
- SRM 板激光器制冷器电流值;
- GEM 板激光器偏置电流值;
- GEM 板激光器制冷器电流值。

性能单板是指网管告警监视窗口中的"检测点单板",该单 板指示性能值,但性能来源不一定就是报性能的单板。

●测试尾纤根据接口形状选用 FC/PC 或 SC / PC 连接头的尾 纤

●必须定期校准仪表,保证测试数据的准确和可靠

 对于在线业务的光板,测试采用 MON 口进行,测试到的 光功率是输入口光功率的 5%。输入光功率值通过计算得到, 即输入光功率=测试光功率/5%

4.3 性能分析及处理

表 4-1至表 4-23为常见性能的产生原因及处理方法,可以在维护 工作中参考。

表 4-1 OTU 激光器输出光功率性能值过限

项目	描述
性能名称	OTU 激光器输出光功率性能值过限
性能解释	OTU 激光器输出光功率低于" 输出弱光门限 "或者" 输 出无光门限 "
性能分类	光功率性能
性能单板	ΟΤU
性能原因	1.0TU 单板激光器故障 2.0TUR 单板在无输入光功率时的保护(0TUR 板保护 使能打开)
处理方法	更换 OTU 单板 关闭 OTUR 保护使能
备注	

项目	描述
性能名称	SRM/GEM 单板激光器输出光功率性能值过限
性能解释	SRM/GEM 单板激光器输出光功率低于"输出弱光门 限"或者"输出无光门限"
性能分类	光功率性能
性能单板	SRM/GEM 单板
性能原因	1.SRM/GEM 单板激光器故障 2.SRM/GEM 单板激光器保护使能开启,激光器关断 开启
处理方法	1.更换 SRM/GEM 单板 2.关闭 SRM/GEM 单板保护使能,打开激光器
备注	

表 4-2 SRM/GEM 单板激光器输出光功率性能值过限

项目	描述
性能名称	OTU 板(APD/PIN 接收模块)输入光功率过限
性能解释	OTU 板(APD/PIN 接收模块)输入光功率低于" 输 入弱光门限 " 、 " 输入无光门限 " ,或者高于 " 输 入过载门限 "
性能分类	光功率性能
性能单板	ΟΤυ
性能原因	OTU 板 (APD/PIN 接收模块)输入光功率低于"输 入弱光门限"、"输入无光门限" 对于 OTUT:从 SDH 过来的光功率过低;可能 SDH 发光单板故障,SDH 到 DWDM 的 OTUT 单板间的连接 衰耗过大 对于 OTUG 和 OTUR:上游 ODU 单板过来的光功率过 低;可能 ODU 单板和本单板之间的光连接故障,ODU 单板故障,ODU 单板和本单板之间的光连接故障,ODU 单板故障,ODU 单板的上游单板或者站点故障 OTU 板 (APD/PIN 接收模块)输入光功率高于"输 入过载门限" 对于 OTUT:从 SDH 过来的光功率过高;可能 SDH 发光单板和 DWDM 的 OTUT 之间加的衰耗器被人去掉 了 对于 OTUG 和 OTUR:上游过来的光功率过高;本站 输入部分或者上游站点输出部分加的衰耗器被人 去掉了
	 OTU 板(APD/PIN 接收模块)输入光功率低于 "输入弱光门限"、"输入无光门限" 对于 OTUT:从 SDH 过来的光功率过低;更换 SDH 故障单板;仔细检查 SDH 到 DWDM 的 OTUT 单板间的

表 4-3 OTU 板 (APD/PIN 接收模块) 输入光功率过限

处理方法	法兰、尾纤等器件,排除由于盘纤、器件损坏、污 迹等因素导致加入的额外衰耗 对于 OTUG 和 OTUR:上游过来的光功率过低;检查 ODU 单板的相关波长输出光功率,如果和 OTU 输入 光功率一致,问题在 ODU 单板或者 ODU 单板的上游; 如果 ODU 相关波长的输出光功率正常,问题在 ODU 单板和 OTU 之间的光连接上,仔细检查 ODU 到 OTU 单板光连接间的法兰、尾纤等器件,排除由于盘纤、
	单板光连接间的法兰、尾纤等器件,排除由于盘纤、
	器仵损坏、泻迹寺因素导致加入的额外衰耗
	OTU 板(APD/PIN 接收模块)输入光功率高于 " 输 入过载门限 "
	对于 OTUT:从 SDH 过来的光功率过高;在 SDH 和
	2. 对于 010G 和 010R:上游过来的光切率过高; 在本站
	输入部分或者上游站点输出部分增加衰耗器
备注	

项目	描述
性能名称	SRM/GEM 单板输入光功率过限
性能解释	SRM/GEM 单板输入光功率低于"输入弱光门限"、
	" 输入无光门限 ",或者高于 " 输入过载门限 "
性能分类	光功率性能
性能单板	SRM/GEM 单板
	SRM/GEM 单板输入光功率低于"输入弱光门限"、
	" 输入无光门限 "
	1 .SDH 过来的光功率过低 ;可能 SDH 发光单板故障 ,
	SDH 到 SRM/GEM 单板输入间的连接衰耗过大
	2.上游 ODU、OAD 单板过来的光功率过低;可能 ODU、
	OAD 单板和本单板之间的光连接故障 ,ODU、OAD
性能原因	单板故障 , ODU、OAD 单板的上游单板或者站点
	故障
	SRM/GEM 单板输入光功率高于"输入过载门限"
	1.从 SDH 过来的光功率过高;可能 SDH 发光单板
	和 SRM/GEM 单板输入之间加的衰耗器被人去掉
	了
	2.上游过来的光功率过高;本站输入部分或者上
	游站点输出部分加的衰耗器被人去掉了
	SRM/GEM 单板输入光功率低于"输入弱光门限"、
	" 输入无光门限 "
	1.从 SDH 过来的光功率过低;更换 SDH 故障单板;
	仔细检查 SDH 到 SRM/GEM 单板输入之间的法兰
	盘、尾纤等器件,排除由于盘纤、器件损坏、
处理方法	污迹等因素导致加入的额外衰耗
	2.上游过来的光功率过低;检查 ODU、OAD 单板的

表 4-4 SRM/GEM 单板输入光功率过限

	相关波长输出光功率,如果和 SRM/GEM 单板输
	入光功率一致,问题在 ODU、OAD 单板或者 ODU、
	OAD 单板的上游;如果 ODU、OAD 相关波长的输
	出光功率正常,问题在 ODU、OAD 单板和
	SRM/GEM 单板之间的光连接上,仔细检查 ODU、
	OAD 到 SRM/GEM 单板光连接之间法兰盘、尾纤
	等器件,排除由于盘纤、器件损坏、污迹等因
	素导致加入的额外衰耗
	SRM/GEM 单板输入光功率高于"输入过载门限"
	1.从 SDH 过来的光功率过高;在 SDH 和 SRM/GEM
	单板输入之间增加衰耗器
	2.上游过来的光功率过高;在本站输入部分或者
	上游站点输出部分增加衰耗器
友注	

项目	描述
性能名称	ODU 板通道 1(2,3,…32)光功率性能值过限
性能解释	ODU 板通道 1(2,3,…32)光功率低于 " 弱光门 限 " 或者 " 无光门限 "
性能分类	光功率性能
性能单板	ODU
性能原因	ODU 单板故障:如果 ODU 输入总光功率正常,而各 通道或者个别通道输出光功率性能低于"弱光门 限"或者"无光门限",那么该 ODU 故障 上游故障:如果 ODU 输入总光功率性能也低于"弱 光门限"或者"无光门限",那么故障在 ODU 单板 的上游连接或者上游单板,需要向上游逐级检查
处理方法	ODU 单板故障:更换该 ODU 单板 下游故障:先通过网管向上游逐级检查单板输入和 输出光功率情况,定位故障点,然后前往故障点检 查光连接并核实光功率
备注	

表 4-5 ODU 板通道 1 (2,3,...32) 光功率性能值过限

性能名称	ODU 板输入总光功率性能值过限
性能解释	ODU 板输入总光功率低于 " 弱光门限 " 或者 " 无光 门限 "
性能分类	光功率性能
性能单板	ODU
性能原因	上游的 OPA 单板过来的光功率过低;可能上游 OPA 单板和本单板之间的光连接故障,上游的 OPA 单板 故障,上游的 OPA 单板和 ODF 的光连接故障,光缆 线路故障,OPA 单板的上游站点故障
处理方法	检查 OPA 单板的输出光功率,如果和 ODU 输入总光 功率一致,问题在 OPA 单板或者 OPA 单板的上游; 如果 OPA 单板的输出光功率正常,问题在 OPA 单板 和 ODU 之间的光连接上,仔细检查 OPA 到 ODU 单板 光连接间的法兰、尾纤等器件,排除由于盘纤、器 件损坏、污迹等因素导致加入的额外衰耗
备注	

表 4-6 ODU 板输入总光功率性能值过限

项目	描述
性能名称	OMU 板主输出光功率性能值过限
性能解释	OMU 板主输出光功率低于" 输出弱光门限 "或者" 输 出无光门限 "
性能分类	光功率性能
性能单板	ОМИ
性能原因	如果 OTU 各波长输出光功率正常,而 OMU 板主输出 光功率性能低于"弱光门限"或者"无光门限", 那么故障有两种可能:OMU 单板故障,OTU 到 OMU 的光连接有故障 如果 OTU 各波长输出光功率不正常,故障在 OTU
处理方法	到达现场测试 OMU 各波长的输入光功率和 OTU 各波 长输出光功率是否一致。若是,OMU 故障。若不是, 仔细检查 OTU 到 OMU 单板光连接间的法兰、尾纤等 器件,排除由于盘纤、器件损坏、污迹等因素导致 加入的额外衰耗 更换 OTU 单板
备注	

表 4-7 OMU 板主输出光功率性能值过限

项目	描述
性能名称	OAD 板支路 1(2,3,…8)光功率性能值过限
性能解释	OAD 板支路 1 (2 , 3 ,8) 光功率低于 " 弱光门限 " 或者 " 无光门限 "
性能分类	光功率性能
性能单板	OAD
性能原因	OAD 单板故障:若上游 OPA、OGMD、OPMS 输出光功 率正常,上游站 OTU、GEM、SRM 输出光功率正常, 其他单板入出光功率读数都正常,此时 OAD 支路 1 (2,8)光功率性能低于"弱光门限"或"无 光门限",则该 OAD 故障或 OPA 到 OAD 光连接故障。 上游故障:如果上游 OPA、OGMD、OPMS 输出光功率 性能低于"弱光门限"或者"无光门限",此时 OAD 支路 1 (2,3,8)光功率性能值过限性能低于 "弱光门限"或者"无光门限",那么故障在 OPA 单板,OPA 单板上游连接或者上游单板,需要向上 游逐级检查
处理方法	1.检查 OAD 单板的输入光功率,如果和 OPA、OGMD、 OPMS 输出光功率一致,OAD 单板故障,更换 OAD 单 板即可;如果和 OPA、OGMD、OPMS 单板的输出光功 率不一致,问题在 OPA 单板和 OAD 之间的光连接上, 仔细检查 OPA、OGMD、OPMS 到 OAD 单板光连接间的 法兰、尾纤等器件,排除由于盘纤、器件损坏、污 迹等因素导致加入的额外衰耗 2.检查上游连接
备注	

表 4-8 OAD 板支路 1 (2,3,...8) 光功率性能值过限

项目	
性能名称	OGMD 光功率性能值过限
性能解释	OGMD 光功率低于"弱光门限"或者"无光门限"
性能分类	光功率性能
性能单板	OGMD
性能原因	 OGMD 单板故障:如果上游 OPA 输出光功率正常, 上游站点 OTU、GEM、SRM 激光器输出光功率正常,其他单板入出光功率读数都正常,此时 OGMD 光功率性能低于"弱光门限"或者"无光门限", 那么该 OGMD 故障或者 OPA 到 OGMD 的光连接故 障 上游故障:如果本节点 OPA 输出光功率性能低 于"弱光门限"或者"无光门限",此时 OGMD 光功率性能值过限性能低于"弱光门限"或者 "无光门限",那么故障在 OPA 单板,OPA 单 板上游连接或者上游单板,需要向上游逐级检 查
处理方法	 检查 OGMD 单板的输入光功率,如果和 OPA 输出 光功率一致,OGMD 单板故障,更换 OGMD 单板 即可;如果和 OPA 单板的输出光功率不一致, 问题在 OPA 单板和 OGMD 之间的光连接上,仔细 检查 OPA 到 OGMD 单板光连接间的法兰、尾纤等 器件,排除由于盘纤、器件损坏、污迹等因素 导致加入的额外衰耗 检查上游连接
备注	

表 4-9 OGMD 板光功率性能值过限

项目	描述
性能名称	SDM 光功率性能值过限
性能解释	SDM 光功率低于 " 弱光门限 " 或者 " 无光门限 "
性能分类	光功率性能
性能单板	SDMR/SDMT
性能原因	 SDMR 单板故障:如果上游 OBA/SDMT 输出光功率 正常,上游站点 OTU,GEM,SRM 激光器输出光 功率正常,其他单板入出光功率读数都正常, 此时 SDMR 光功率性能低于"弱光门限"或者"无 光门限",那么该 SDMR 故障或者上游 OBA/SDMT 到 SDMR 的光连接故障 SDMT 单板故障:如果本节点 OTU,GEM,SRM 激 光器输出光功率正常,其他单板入出光功率读 数都正常,此时 SDMT 光功率性能低于"弱光门 限"或者"无光门限",那么该 SDMT 故障或者 本节点 OTU,GEM,SRM 到 SDMT 的光连接故障
处理方法	 SDMR 单板的输入光功率,如果和上游 OBA/SDMT 输出光功率一致,SDMR 单板故障,更换 OGMD 单 板即可;如果和上游 OBA/SDMT 单板的输出光功 率不一致,问题在上游 OBA/SDMT 单板和 SDMR 之间的光连接上,仔细检查上游 OBA/SDMT 到 SDMR 单板光连接间的法兰、尾纤等器件,排除 由于盘纤、器件损坏、污迹等因素导致加入的 额外衰耗 检查本节点内部连纤
备注	

表 4-10 SDM 板光功率性能值过限

项目	描述
性能名称	OP/OPCS 光功率性能值过限
性能解释	OP/OPCS 光功率低于 "弱光门限 " 或者 "无光门限 "
性能分类	光功率性能
性能单板	OP/OPCS
性能原因	 OP/OPCS 单板故障:通道保护时,若上游节点 输出光功率正常,本节点 OPA/OGMD/AD 输出光 功率正常,其他单板入出光功率读数都正常, 此时 OP/OPCS 光功率性能低于"弱光门限"或 "无光门限",则该 OP/OPCS 故障或者 OPA 到 OP/OPCS 的光连接故障 上游故障:若本节点 OPA 输出光功率性能低于 "弱光门限"或"无光门限",此时 OGMD 光 功率性能值过限,性能低于"弱光门限"或"无 光门限",那么故障在 OPA 单板,OPA 单板上 游连接或者上游单板,需要向上游逐级检查
处理方法	 检查 OP/OPCS 单板的输入光功率,如果和 OPA, OGMD, OAD 输出光功率一致, OP/OPCS 单板故 障,更换 OP/OPCS 单板即可;如果和 OPA 单板 的输出光功率不一致,问题在 OPA, OGMD, OAD 单板和 OP/OPCS 之间的光连接上,仔细检查 OPA,OGMD,OAD 到 OP/OPCS 单板光连接间的法 兰、尾纤等器件,排除由于盘纤、器件损坏、 污迹等因素导致加入的额外衰耗 检查上游连接
备注	

表 4-11 OP/OPCS 板光功率性能值过限

项目	描述
性能名称	OBA 输入光功率性能值过限
性能解释	OBA 输入光功率低于 " 弱光门限 " 或者 " 无光门限 "
性能分类	光功率性能
性能单板	OBA
性能原因	OMU 板主输出光功率低于 " 弱光门限 " 或者 " 无光 门限 " , 那么 OMU 单板故障或者 OMU 单板 上游故障 2.OMU 板主输出光功率正常,问题在 OMU 单板 和 OBA 单板之间的光连接上
处理方法	1.上游故障:先通过网管向上游逐级检查单板输入 和输出光功率情况,定位故障点,然后前往故障点 检查光连接并核实光功率 2.0MU 单板和 OBA 单板之间的光连接故障:仔 细检查 OMU 到 OBA 单板光连接间的法兰、尾纤等 器件,排除由于盘纤、器件损坏、污迹等因素导致 加入的额外衰耗
备注	

表 4-12 OBA 输入光功率性能值过限

项目	描述
性能名称	OBA 输出光功率性能值过限
性能解释	OBA 输出光功率低于 " 弱光门限 " 或者 " 无光门限 "
性能分类	光功率性能
性能单板	OBA
性能原因	1.0BA 单板故障:如果 0BA 输入光功率正常, 0BA 输出光功率性能低于"弱光门限"或者"无光 门限",那么该 0BA 故障 2.上游故障:如果 0BA 输入光功率性能也低于"弱 光门限"或者"无光门限",那么故障在 0BA 单板 的上游连接或者上游单板,需要向上游逐级检查
处理方法	OBA 单板故障:更换该 OBA 单板 上游故障:先通过网管向上游逐级检查单板输入和 输出光功率情况,定位故障点,然后前往故障点检 查光连接并核实光功率
备注	

表 4-13 OBA 输出光功率性能值过限

项目	
性能名称	OPA 输入光功率性能值过限
性能解释	OPA 输入光功率低于 " 弱光门限 " 或者 " 无光门限 "
性能分类	光功率性能
性能单板	OPA
性能原因	上游站点 OBA 或者 OLA 板输出光功率低于"弱光门 限"或者"无光门限", 那么上游站点 OBA 或者 OLA 板故障或者 OBA 上游站点 OBA 或者 OLA 板的上游有 故障 上游站点 OBA 或者 OLA 板输出光功率正常, 问题在 上游站点 OBA 或者 OLA 板到 ODF 的光连接、光缆线 路或者本站 ODF 到 OPA 板之间的光连接上
处理方法	上游故障:先通过网管向上游逐级检查单板输入和 输出光功率情况,定位故障点,然后前往故障点检 查光连接并核实光功率 线路和连接故障:仔细检查上游 OBA/OLA 到 ODF 和 本站 ODF 到 OPA 光连接间的法兰、尾纤等器件,排 除由于盘纤、器件损坏、污迹等因素导致加入的额 外衰耗。使用 OTDR 排除光缆线路故障问题
备注	

表 4-14 OPA 输入光功率性能值过限

项目	描述
性能名称	OPA 输出光功率性能值过限
性能解释	OPA 输出光功率低于 " 弱光门限 " 或者 " 无光门限 "
性能分类	光功率性能
性能单板	OPA
性能原因	OPA 单板故障:如果 OPA 输入光功率正常,而 OPA 输出光功率性能低于" 弱光门限 "或者" 无光门限 ", 那么该 OPA 故障 上游故障:如果 OPA 输入光功率性能也低于 " 弱光 门限 " 或者 " 无光门限 " ,那么故障在 OPA 单板的 上游连接或者上游单板,需要向上游逐级检查
处理方法	OPA 单板故障:更换该 OPA 单板 上游故障:先通过网管向上游逐级检查单板输入和 输出光功率情况,定位故障点,然后前往故障点检 查光连接并核实光功率
备注	

表 4-15 OPA 输出光功率性能值过限

项目	描述
性能名称	OLA 输入光功率性能值过限
性能解释	OLA 输入光功率低于 " 弱光门限 " 或者 " 无光门限 "
性能分类	光功率性能
性能单板	OLA
性能原因	上游站点 OBA 或者 OLA 板输出光功率低于"弱光门 限"或者"无光门限",那么上游站点 OBA 或者 OLA 板故障或者 OBA 上游站点 OBA 或者 OLA 板的上游有 故障 上游站点 OBA 或者 OLA 板输出光功率正常,问题在 上游站点 OBA 或者 OLA 板到 ODF 的光连接、光缆线 路或者本站 ODF 到 OLA 板之间的光连接上
处理方法	上游故障:先通过网管向上游逐级检查单板输入和 输出光功率情况,定位故障点,然后前往故障点检 查光连接并核实光功率 线路和连接故障:仔细检查上游 OBA/OLA 到 ODF 和 本站 ODF 到 OLA 光连接间的法兰、尾纤等器件,排 除由于盘纤、器件损坏、污迹等因素导致加入的额 外衰耗。使用 OTDR 排除光缆线路故障问题
备注	

表 4-16 OLA 输入光功率性能值过限

项目	描述
性能名称	OLA 输出光功率性能值过限
性能解释	OLA 输出光功率低于 " 弱光门限 " 或者 " 无光门限 "
性能分类	光功率性能
性能单板	OLA
性能原因	OLA 单板故障:如果 OLA 输入光功率正常,而 OLA 输 出光功率性能低于"弱光门限"或者"无光门限", 那么该 OLA 故障 上游故障:如果 OLA 输入光功率性能也低于"弱光门 限"或者"无光门限",那么故障在 OLA 单板的上游 连接或者上游单板,需要向上游逐级检查
处理方法	OLA 单板故障:更换该 OLA 单板 上游故障 :先通过网管向上游逐级检查单板输入和输 出光功率情况 ,定位故障点 ,然后前往故障点检查光 连接并核实光功率
备注	

表 4-17 OLA 输出光功率性能值过限

项目	描述
性能名称	OSC A/B 向接收光功率性能值过限
性能解释	OSC A/B 向接收光功率低于"接收下限"或者高于"接收上限"
性能分类	光功率性能
性能单板	osc
性能原因	OSC 故障 OPA 故障 OBA 故障 OLA 故障 光纤连接故障 光缆线路故障
处理方法	排除主光通道问题:检查本站 OSC 上游方向 OPA 或 OLA 板输入或输出光功率是否过限,若 OPA 或 OLA 板有相 应性能过限指示,问题在上游主光通道,先通过网管 向上游逐级检查单板输入和输出光功率,定位故障 点,然后前往故障点检查光连接核实光功率。若没有, 问题在上游 OSC 的发或者本地 OSC 收上 定位站点和单板:排除主光通道有问题后,检查上游 OSC 发光是否正常,上游 OSC 到 OBA 或 OLA 的光连接 情况,本站 OPA 或 OLA 到 OSC 的光连接情况,本站 OSC 的输入光功率。定位问题最终原因并做更换和处理。 特别注意: ZXMP M800 的一个 OSC 模块的输入、输出 分别对应来自和去往同一个站点的 OPA 的 SOUT 和 OBA 的 SIN
备注	

表 4-18 OSC A/B 向接收光功率性能值过限

项目	描述
性能名称	OTU/SRM/GEM B1 误码(B1 误码个数、误码秒计数、
	严重误码秒计数不为0)
性能解释	OTU/SRM/GEM 单板监测到误码(B1 误码个数、误码
	秒计数、严重误码秒计数)
性能分类	误码性能
性能单板	OTU/SRM/GEM
	SDH 过来的误码
	上游 OTUT/SRM/GEM 单板故障
	OMU 故障
	OA 故障
性能原因	ODU,OAD,OGMD 故障
	OTUR 故障
	单板间光纤连接故障
	线路光缆故障
	首先排除光功率过限导致的误码,监测本地
	OTU/SRM/GEM 输入光功率和上游单板输入、输出光
	 功率情况,根据前面对光功率过限问题的处理操作
	如果上、下游和本站 OTU/SRM/GEM 都没有光功率过
	限性能,检查最上游报误码的OTU/SRM/GEM单板,
处理方法	│ │如果该单板是 OTUT/SRM/GEM,和 SDH 设备连接,而
	 SDH 设备发端也有 B1 误码上报,问题在 SDH,通过
	 排除 SDH 故障排除故障。如果 SDH 设备没有 B1 误码
	上报,故障在 OTUT/SRM/GEM,更换即可
	 如果最上游报误码的 OTU/SRM/GEM 那么问题在上游
	OTU/SRM/GEM ,通过检查本站 MON 口相关波长的信噪

表 4-19 OTU/SRM/GEM B1 误码性能

	比定位,更换故障 OTU/SRM/GEM 即可 如果只有一个站点的 1 块 OTU/SRM/GEM 单板报大 B1 误码,是单板高频电缆线松脱导致,拧紧该同轴线 或者更换该单板即可。OTU10G 单板上没有高频电 缆,若发现 B1 误报,直接更换单板
备注	

项目	描述
性能名称	OSC 板 A/B 向误码性能(误码 CV、误码秒 ES、严重 误码秒 SES、不可用秒 UAS)
性能解释	OSC 单板监测到误码或者中断(误码 CV、误码秒 ES、 严重误码秒 SES、不可用秒 UAS)
性能分类	
性能单板	OSC
性能原因	OSC 单板故障 OA 故障 单板间光纤连接故障 线路光缆故障
处理方法	首先排除主光通道的问题,如果主光通道 0A 单板输 入、输出光功率有性能过限,通过前面提供的方法 进行处理 如果 0A 没有性能过限上报,说明是 0SC 监控通道问 题。首先检查上游 0SC 发送光功率,上游 0BA/0LA 收 0SC 过来的光功率,两者必须相同,如果不同问 题在 0SC 到 0BA/0LA 的光纤连接上。然后再检查本 站点 0PA/0LA 的 0SC 输出光功率是否与(上游 0SC 发送光功率 - 线路衰减)吻合,若差别较大,可能 是上游 0BA/0LA 的 1550/1510 合波器的接头脏了或 器件坏了,或者下游 0PA/0LA 的 1550/1510 分波器 的接头脏了或器件坏了;最后检查本站 0SC 接收光 功率,本站 0PA/0LA 发 0SC 的光功率,两者必须相 同,如果不同问题在 0PA/0LA 到 0SC 的光纤连接上 通过上面操作仍然有误码,问题在 0SC 单板,通过 备件更换办法来确定故障 0SC 单板是在本地还是上

表 4-20 OSC 板 A/B 向误码性能

ZTE中兴

	游,更换即可
备注	
项目	描述
------	--
性能名称	OSC 板 A/B 向幀失步次数性能
性能解释	OSC 单板信号失步
性能分类	同步性能
性能单板	OSC
性能原因	配置问题 单板间光纤连接故障 0SC 单板故障
处理方法	首先在网管上检查时钟配置,保证全网监控系统只有 一个内时钟,其余网元 0SC 采用抽时钟方式 通过监测各站与监控通道相关的单板(0A/0SC)收发 光功率情况来判断单板间光纤连接关系正常,排除光 纤连接因素导致的两个或者多个内时钟情况,导致幀 失步性能 通过上面操作仍然有幀失步性能,问题在 0SC 单板, 通过备件更换办法来确定故障 0SC 单板是在本地还 是上游,更换即可
备注	

表 4-21 OSC 板 A/B 向幀失步次数性能

表 4-22 温度过限性能

项目	描述
性能名称	温度过限性能
性能解释	OTU/SRM/GEM 板激光器温度、OBA 板泵 1/2 温度、OPA 板泵 1/2 温度、OLA 板泵 1/2 温度、OSC 板 A/B 向发 射温度性能超过" 温度上限 "或者低于" 温度下限 "。 注意所有器件正常工作的温度是 25 。如果温度偏 移 5 , OTU/SRM/GEM 激光器、OA 泵都会保护性 自动关闭
性能分类	温度性能
性能单板	OTU/SRM/GEM, OBA, OPA, OLA
性能原因	环境温度过高 机架风扇故障 上报性能的单板故障
处理方法	高温环境下请使用空调保证机房温度环境 更换故障风扇 更换上报性能的单板
备注	

表	4-23	电流过限性能
---	------	--------

性能名称	电流过限性能
性能解释	OTU/SRM/GEM 板激光器偏置电流、OTU/SRM/GEM 板激 光器制冷电流、OA 板泵 1/2 偏置电流、OA 板泵 1/2 背向电流值、OA 板 TEC1/2 制冷电流值超过"最大值" 或者低于"最小值"
性能分类	电流性能
性能单板	OTU/SRM/GEM , OBA , OPA , OLA
性能原因	设置问题 单板故障
处理方法	开局时一定要将原始电流数据记录并备份下来,正确 设置好偏流的上、下限 如果上、下限电流值设置正确,此时上报该性能,说 明单板器件老化或者故障,更换单板即可
备注	

第5章 网管维护和巡检指导

5.1 网管维护和巡检指导

本节主要是针对网管系统本身的日常维护和工程巡检维护指导, 包括网管硬件、操作系统、网管数据库、网管软件的维护和巡检。

5.1.1 网管维护检查和巡检分类

● 日常例行维护和巡检:

日常例行维护是指每天必须进行的维护项目。使维护人员随时了 解网管系统运行情况,及时发现问题、解决问题。

日常巡检是指每月或者每季必须进行的巡检项目。使维护人员对 网管系统进行深入测试,及时发现潜在问题并予以解决问题。

● 周期性例行维护:

周期性例行维护是指定期进行的维护。

● 突发性维护:

突发性维护是指因故障处理、网络调整等工作完成后带来的维护 任务。

● 年检:

年检的目的是对网管系统进行彻底的检查和数据结构的清理,保 证系统在新的一年能够更加稳定可靠工作。

5.1.2 日常维护检查和巡检的基本原则

日常维护和巡检的基本原则是:日常维护和巡检要例行化。要有 详细的维护、巡检计划和相应的作业内容,并在日常维护和巡检 工作中有效执行。

5.1.3 网管日常维护检查和巡检项目

对于 Unitrans ZXONM E300 网管系统日常维护和巡检涉及下面的 主要项目,描述如下。

5.1.3.1 检查网管系统的硬件状态

项目	检查网管系统的硬件状态	
原因		
操作	检查网管工作站、终端路由器等硬件设备是否处于正常运行 状态:如果工作不正常,应及时联系硬件供应商(如 HP、CISCO 等)处理。 检查鼠标、键盘、显示器、打印机等工作状态是否处于正常 运行状态:如果工作不正常,应及时联系硬件供应商(如 HP、 DELL等)处理。	

表 5-1 网管系统硬件状态

5.1.3.2 检查系统磁盘空间的占用情况

表 5-2 系统磁盘空间占用情况

项目	检查系统磁盘空间的占用情况	
原因	建议磁盘空间占用率不超过 90%,否则可能会影响网管系统的运	
	行效率。	
操作	工作站上,使用 df — k 命令查询磁盘空间占用情况。主要检查	

ZTE中兴

	"/"目录、"/opt"、"/unitrans"、"/ZXONM_E300"目录
	占用情况,不超过 90%。如果超过 90%,建议清除不明超大垃圾
	文件或者目录,例如反复备份的数据以及无用的文件和目录、日
	志信息等。
	PC 机上,查看操作系统所在磁盘、ZXONM E300 网管程序所在目
	录磁盘空间占用情况。

5.1.3.3 网管系统运行效率检查

项目	检查网管系统运行效率	
原因	检查网管系统 cpu 和内存占用率 ,避免网管系统运行资源被其他系	
	统占有。	
	主要针对 pc 机 , 因为 pc 机上开发的应用软件比工作站丰富 , 因此	
	必须重点检查。	
+B. <i>V</i> r-	同时按住 " ct r l " 、 " al t " 、 " de le te " 键,出现	
採TF	<mark>▼indows 任务管理器</mark> 对话框,检查 ^{进程} 和性能中 cpu 使用情况	
	和内存占用情况,确认系统资源没有被其他应用程序占用。	
	如果系统资源被占用 , 需要检查原因、定位问题并排除。	

5.1.3.4 网管系统防火墙和补丁检查

表 5-4 网管系统防火墙及补丁

项目	检查网管系统防火墙和补丁	
原因		
	查防火墙安装情况。	
操作	主要针对 pc 机,因为 pc 机上开发的应用软件比工作站丰富,容易感	

ZTE中兴

5.1.3.5 密码和权限安全控制

表	5-5	密码权限安全控制
---	-----	----------

项目	密码和权限安全控制
原因	
操作	1、对不同级别的维护人员设置用户权限,有专人管理密码并定期
	修改密码;网管用户的权限和网元用户的权限应一致。
	2、网管系统所用工作站(或计算机)要专机专用,原则上不与外
	部系统联网。如果要与外部联网,必须采取隔离和防火墙等安全措
	施。禁止在网管上进行与维护无关的操作,或使用与维护无关的软
	盘和软件,严防感染计算机病毒。

5.1.3.6 监控服务器程序运行状态

表 5-6 监控服务器程序运行状

项目	监控服务器程序运行状态
原因	检查服务器程序运行状态是否正常,如果服务器没有启动,网管界
	面程序运行肯定不正常。

操作	PC 机上,查看服务器程序运行是否正常。具体方法是:	
	查看 PC 机右下角图标 11:30 ,其中 就是服务器程序 ,	
	如来10机石下用图称甲有444标识。就很不服务器程序正常后动了。 工作站上,执行以下命令手丁启动服务器端:	
	1.手工启动 Sybase 数据库的命令如下:	
	#/sbin/rc2.d/S900zteSybase start	
	2.Dbsvr 和 Manager 均为 ZXONM E300 的服务进程,由守护进程	
	zdaemon 运行。手工启动该进程的命令如下:	
	#/sbin/rc2.d/S900zteDaemon. Start	

5.1.3.7 定期进行网管数据备份

表 5-7 网管数据备份

项目	定期进行网管数据备份
原因	1、通过定期备份网管数据,在网管故障、硬件损坏或其它原因导致
	网管异常时,能及时恢复网管数据。
	2、定期(网管运行初期暂定每月1次,待系统稳定工作后,可适当
	延长至每季1次)进行数据备份;在重要数据修改后和网管系统升
	级前,应做好数据备份;建议将数据备份到其它存储设备上(如磁
	带机、磁盘阵列、磁光盘、∪盘等)。
操作	因为 e300 网管会定期自动备份数据到./db/backup/dump
	和./db/backup/config 目录下,因此,日常维护中,建议压缩和拷
	贝备份文件到备份硬盘中的方式,操作如下:
	工作站上:
	cd /opt/unitrans/ZXONM_E300/db/backup
	tar * a.tar
	写磁带:# tar cf /dev/rmt/Omb a.tar

读磁带:# tar xf /dev/rmt/Omb
PC 机上 进入 C: \ZX0NM_E300\db\backup 目录中。 将 C: \ZX0NM_E300\db\backup 目录下的文件压缩为 a.zip,拷贝压 缩备份文件到其他存储器上。
通过网管界面进行手工备份: E300 3.14 013 及以后版本操作方法, 网管界面上进入: ^{系统} (S) - ^{系统数据管理} 数据库备份/恢复 自动备份 E300 3.14 013 及以后版本支持设置自动备份,网管界面上进入: 系统 (S) 系统数据管理 数据库配置数据自动备份
★ 34.0 - 秋318416142 - 数据件能直数据自初审切。 数据恢复 恢复备份在网管数据库侧的数据。ZX0NM E300 网管的恢复操作为全 量式恢复,即恢复数据将覆盖原有数据。把备份到其他存储器上数据,拷贝到\ZX0NM_E300\db\backup 目录下,在客户端操作窗口中, 选择 系统数据管理 - 数据库备份/恢复。数据恢复操作 使用U

说明:

以上备份方式,只适用于同一网管版本的数据备份和恢复。不同网管版本 之间的数据升级或恢复,只能使用脚本导出的方式,这里暂不提供此方法。

此外,工作站上还可以使用 dump 方式备份数据,PC 上也可以使用 sybase 自带备份工具备份,由于这样备份数据较大,建议只在开局时备份一次。

5.1.3.8 定期检查日志转储的设置

表 5-8 检查日志转储设置

项目

定期检查日志转储的设置

原因	日志过大会导致网管运行速度变慢。ZXONM E300 提供了日志自动转
	储功能 , 定期检查是为了防止日志转储设置被更改。
操作	操作: 网管菜单上, 系统 ③ 日志管理, 如果转储, 需要设置 正确转储目录, 如果没有设置, 需要重新设置, 选择 备份文件 中 的 ^〇 设置备份目录 进行设置; 日志转储的设置采用网管缺省设置 即可。

5.1.3.9 检查网元、单板通讯状态是否正常

表 5-9 网元单板通讯状态

项目	检查网元、单板通讯状态是否正常
原因	确认网管与各网元的连接状态是否正常 ,网管与各单板连接是否正 常
操作	方法1: 进入配置 (C) - 网元路由配置,使用 shift 功能选择全部网元: 在网元上点击鼠标右键,选择时间管理,观察 NCP时间和 校时时间 - 致性。或者选择 配置 (C) - 通信状态查询 来检查。 方法2: 由于网管和网元、网元和网元之间的通讯方式采用 tcp/ip 协议, 因此可以通过在网管上 ping 网元地址的方式来检查。如果采用-t 命令,可以通过 ctrl+break 来检查丢包情况。 进入维护 (M) - 通讯测试,选择需要测试的网元和单板,然后在 发送 (Ox) 输入8个1,选择 应用 按钮,测试结果 反馈成功信息。 如果不成功,需要通过维护 (M) - 环回测试 功能定位问题原因。

5.1.3.10 网管侧与网元侧数据一致性校验

表 5-10 网管数据和网元数据是否一致

项目	网管侧与网元侧数据一致性校验
原因	避免因非本网管配置网元数据,导致网管侧与网元侧数据不一致,
	而可能发生影响业务的情况。
操作	建议在网管和网络系统都运行正常的情况下进行此项检查; 进入网管菜单,系统③- ^{ICP} 数据管理- ^{L载比较} ,在 数据库上载对话框中选择需要比较的数据库,点击上载比较按钮, 对全网网元逐一进行一致性比较; 对于校验后存在不一致的网元和数据库,应先确认导致不一致的原 因,再执行上载操作。

5.1.4 网管操作建议指导

本节主要介绍 ZXONM E300 网管的一些操作建议,用以指导维护 人员更合理、高效地使用网管进行日常操作,提高操作的安全性。

5.1.4.1 如何关闭 ZXONM E300 网管和操作系统

表 5-11 如何关闭 E300 网管

项目	如何关闭 ZXONM E300 网管和操作系统	
原因	ZX0NM E300 运行期间,忌异常关闭。因为网管运行过程中会一直处理一些事务,如果异常中止可能会导致数据被破坏,而且系统或者	
	机器的异常关闭可能导致系统或者硬盘损坏,从而使网管出现故	
	障。不合理操作包括:	
	网管运行过程中关机 ;	
	非法关机,特别是工作站,尤其要注意。	
建议	关闭方法:	

5.1.4.2 修改网管服务器系统时间前先关闭 ZXONM E300 网管

项目	修改网管服务器的系统时间要求先关闭 ZXONM E300 网管
	此为系统的一个限制。因为如果改动时间,ZXONM E300 的时间
医田	坐标将发生混乱,导致 ZXONM E300 服务器的刷新消息不被触
原囚	发。可能会出现界面颜色不刷新、告警确认框不消失、告警声
	不提示、配置数据上载后,未配置状态不消失等异常情况。
	在网管系统安装时正确设置好服务器系统时间。
建议	如果必须修改,一定要正确退出服务器,修改后重启ZX0NM E300
	服务器。

表 5-12 修改网管服务器系统时间

5.1.4.3 不同网管应使用不同网元用户登录同一网元

表 5-13 不同用户登录同一网元

项目	不同网管应使用不同网元用户登录同一网元
HD	会导致登录网元用户互踢,影响网管对网元的正常监控(包括
原因	告警不能及时上报等操作)。

建议	网元应给不同的网管分配不同的网元用户,并根据网管用户的
	权限分配相应网元用户的权限。
	用网管登录网元时,应先确认网管所用的网元用户没有被其它
	网管使用。

5.1.4.4 合理设置告警属性,减少不必要的告警上报

表 5-14 合理设置告警属性

项目	合理设置告警属性,减少不必要的告警上报
原因	在某些情况下 , 会出现告警大量上报的现象 , 如网元频繁瞬报的
	告警,端口未开通业务上报的大量告警等。大量不必要的告警上
	报到网管,不但影响网管的运行效率,而且影响了维护的效率。
建议	当网元侧频繁瞬间上报一些告警时,可用网管对这些告警设置告
	警反转和告警屏蔽。
	如果网元上没有使用的端口频繁上报告警,可以将这些端口设置
	告警反转。
	如果网元上产生一些无用的告警信息,可以在网管上将其屏蔽。
	设置方法:告警(A) _ 告警设置 _ 告警屏蔽 、告警预投入设
	置告警屏蔽、反转。

5.1.4.5 网管操作时注意操作的返回结果

表 5-15 注意网管操作的返回结	果
-------------------	---

项目	网管操作时注意操作的返回结果		
原因	没有看清当前操作的返回结果,而进行下一步操作,可能导致误 操作。		
建议	通过网管操作下发了一条命令后,应确认返回了正确的结果后再		

执行下一条命令。

5.1.4.6 建议同一时间只对单网元执行下载操作

衣 5-16 问一时间只对单网兀执行下载

项目	建议同一时间只对单个网元执行下载的操作
原因	会出现下载过程中有告警/性能数据的上报 ,影响到 ECC 通信效率 ,
	可能导致下载不成功。
建议	一次只对单个网元执行下载的操作,该网元下载成功后再执行对其
	它网元的下载操作。

5.1.4.7 多网管环境下配置业务修改应注意数据同步

表 5-17 多网管环境下注意数据同步

项目	多网管环境下配置业务修改应注意数据同步	
原因	多网管情况下各网管之间数据不能同一个时刻自动同步,如在 A 网管配置了业务,而 B 网管没有上载过,则通过 B 网管配置业务则	
	会出现不可预知的结果。	
建议	1、日常控制好各个网管的操作权限,尽量只允许一台网管可以配	
	置业务;	
	2、其它网管要进行配置操作时 ,先确认数据是否已经同步刷新过。	

5.1.4.8 网管多终端操作的注意事项

表 5-18 网管多终端操作注意事项

项目	网管多终端操作的注意事项
原因	网管支持多终端同时并发操作。但如果操作不当 , 常常会影响操作
	的正常进行。
	由于主机并发处理能力的限制和网管的数据保护机制 ,多个终端对
	同一个网元进行大数据流量的操作很容易导致这几个终端性能下
	降,并且可能导致这些终端超时,从而操作不成功。
建议	避免多个终端对同一个网元进行大数据流量的操作;
	避免多终端中其中一个终端对网元进行上载、一致性校验,另一个
	终端对同一个网进行其它操作;
	避免一个终端删除或初始化数据,其它终端创建、查询该数据,会
	导致另一个终端操作失败。

5.1.4.9 网元配置变更后及时备份网元配置数据库

表 5-19 网元配置变更后及时备份网元配置数据库

项目	网元配置变更后及时备份网元配置数据库	
原因	配置修改后,如果网管掉电后重新恢复下载网元信息可能影响业 务。	
建议	修改过网元配置或下载配置后,及时用网管备份网元数据库。	

5.1.4.10 大数据量操作的注意事项

表 5-20 大数据量操作的注意事项

项目	大数据量操作的注意事项		
	进行大数据量操作时,可能会导致网管系统处理不过来或者		
原因	使网元处理繁忙 ,从而使网管上出现超时或者后台忙等错误 ,		
	不仅仅浪费时间,而且还可能出现操作不成功的情况发生。		
	操作时,应尽量坚持逐个网元查询、逐个单板查询的方法,		
	如:		
	设置大量告警屏蔽 ;		
	查询大量告警屏蔽 ;		
7-11-201	查询长期的告警信息和性能信息 ;		
建议	大量单板详细信息查看、大量网元版本信息查看、查询网元		
	大量单板属性;		
	下载网元数据;		
	注:如果在大量操作不成功时,建议少量、分批操作,保证		
	每次操作数据量不要太大。		

5.1.4.11 慎用影响业务的操作

表	5-21	影响业务的操作
2	0 21	

项目	慎用影响业务的操作
	ZX0NM E300 网管侧涉及到影响业务的操作都会有确认菜单,
	但是往往会有维护人员没有注意。这些功能如果操作不当,
	可能会直接导致业务中断或网络不可监控等后果。慎用的操
	作包括:
原因	清空 ncp 数据库(可能后果:影响业务和监控)
	数据库下载(可能后果:影响业务和监控)
	设置网关网元(可能后果:影响监控)
	删除网元(可能后果:影响监控)
	保护使能设置(可能后果:影响业务)

	线性保护使能(可能后果:影响业务)
	APR 组管理(可能后果:影响业务)
	网元路由配置和用户通道配置(可能后果:影响业务)
	接入业务配置(可能后果:影响业务)
	汇聚业务配置(可能后果:影响业务)
	连续速率业务设置(可能后果:影响业务)
	开销字节透传(可能后果:影响业务)
	主从时钟板配置(可能后果:影响业务)
	告警设置、性能屏蔽、性能门限设置(可能后果:影响监控)
	自动功率管理(可能后果:影响业务)
	激光器状态(可能后果:影响业务)
	复位单板(可能后果:影响业务和监控)
	设置单板寄存器、设置重要数据(可能后果:影响业务)
	波长调整、功率调整、FEC 设置(可能后果:影响业务)
	保护组外部命令设置(可能后果:影响业务)
	opm 设置、opm 插损设置(可能后果:影响监控)
	线路保护状态(可能后果:影响业务)
	单板软件升级(可能后果:影响业务)
	环回测试(可能后果:影响业务)
建议	危险操作在执行前必须仔细核对。

5.2 网络数据配置检查指导

5.2.1 组网信息

组网信息包括:站点类型、距离和线路衰耗图、波长分配图和网 络拓扑图设定三部分内容。

5.2.1.1 站点类型、距离和衰耗图

如图 5-1所示为站点、距离和衰耗图:

图 5-1 站点类型/距离/衰耗图

设定规范:

现场用户手中的工程资料必须包含此部分内容;

1、进行数据设定前完成上面图表;

 2、填图必须保证和实际一致,没有实际测试前提下以工程勘查为 准,没有工程勘查信息时以合同信息为准;

3、填图需要安装 VISIO 软件, 双击图中央进入编辑;

4、括号内填写站点名称、站间距离和线路衰耗值,数值精确到小 数点后两位;

5、图中默认站点类型是 OTM,根据实际情况选择图示图标进行 站点类型图例的替换;

6、站点数量比较多时请将上图复制使用;

7、此部分内容为记录内容,不需要在设备、网管上进行设定。

5.2.1.2 波长分配图

如图 5-2所示为波长分配图:

ZTE中兴

图 5-2 波长分配图

设定规范:

- 1、现场用户手中的工程资料必须包含此部分内容;
- 2、进行数据设定前完成上面图表;

3、填图必须保证和实际一致,没有实际测试前提下以工程勘查为准,没有工程勘查信息时以合同信息为准;

4、填图需要安装 VISIO 软件,双击图中央进入编辑;

5、括号内填写站点名称;

6、图中默认站点类型是 OTM,根据实际情况选择图示图标进行 站点类型图例的替换;

7、站点数量比较多时请将上图复制使用;

8、此部分内容为记录内容,不需要在设备、网管上进行设定。

5.2.1.3 网络拓扑图设定

如图 5-3为网络拓扑设定界面:

图 5-3 网络拓扑图

设定规范:

1、网管界面中,必须按照实际情况设定子网、网元位置;

2、简单组网,可将所有网元划归一个子网;

3、较复杂的组网,根据网元间逻辑关系,依据方便管理的原则, 可将全网分为几个逻辑子网进行管理。建立逻辑子网后,在相应 子网下建立相关网元; 3、名称采用方便记忆的地名或局名。如果一个地方有几个子架,加"扩1""扩2"等加以区别;

4、网管界面上,网元之间的连接必须符合实际组网情况;

5、使用背景地图方式,网元所在位置和实际地理位置关连,方便 查找;

6、图连接清晰,网络结构简洁明了,方、圆、多边等几何特点明显。

5.2.1.4 网络拓扑设定规范

1、网元位置设定符合实际组网情况;

- 2、名称和排列规范;
- 3、记录规范。

5.2.2 网元信息

5.2.2.1 网元信息列表

网元信息包括:网元名称、网元标识、网元地址、网管地址、子 网掩码、接入网元、系统类型、设备类型、速率等级、在/离线状 态、建链状态、机架配置、子架配置等信息,如下

表 5-22:

网元	А			
参数	<i>N</i>			
网元				
名称	A			
网元	1			
标识	Ι			
网元	100 100 1 1			
地址	192.192.1.1			
网管				
地址	192.192.1.250			
	255.255.255.0	255.255.255.0	255.255.255.0	255.255.255.0
士 网 场码	255.255.0.0	255.255.0.0	255.255.0.0	255.255.0.0
161	255.0.0.0	255.0.0.0	255.0.0.0	255.0.0.0
是否	8	8		8
接入	定	定	定	定
网元	街	否	否	否
系统				
类型	ZXMP M8UU			

表 5-22 网元信息表

设备 类型	ZXMP M800			
网元	OTM	OTM	OTM	OTM
类型	OADM	OADM	OADM	OADM
速率	8X2.5G	8X2.5G	8X2.5G	8X2.5G
	16X2.5G	16X2.5G	16X2.5G	16X2.5G
	32X2.5G	32X2.5G	32X2.5G	32X2.5G
在线	32X10G	32X10G	32X10G	32X10G
	在线	在线	在线	在线
/两 线	离线	离线	离线	离线
自动建链	自动建链	自动建链	自动建链	自动建链
	不自动建链	不自动建链	不自动建链	不自动建链
配直 机架 数量	1			
配置 子架 数量	3			

- 现场用户手中的工程资料必须包含此部分内容;
- 进行数据设定前完成上面表格;
- 填写方式参考示例;
- 站点数量比较多时请将上表复制使用;
- 此部分内容需要在设备、网管上进行设定。

5.2.2.2 网元信息设置办法

网管上设定方法:选择[设备管理 创建网元]菜单,完成表格 中内容的填写和选择即可;设置完毕,选择[配置 网元配置 网元属性]菜单,可查询所配置网元参数是否为所需参数;

设备上设定方法:选择[系统 NCP 数据管理 数据库下载]菜 单,选择网元信息表,单击应用按钮,网元信息就设置到设备上。

5.2.2.3 IP 地址的设定

网元 IP 地址 (NCP 地址)的格式为 A.B.C.D, 子网掩码为
255.255.255.0。A + B 为区域号; C 为网段号; D 为网元号, 一般
设置为1,当同一机房多机架采用 hub 互联,该值设置范围选择1~
20。互联区域内网元 IP 地址必须是唯一的,同一区域号下的网元
数建议不超过 64,最多不能超过 128。A=192 为骨干区域,建议
一般情况下非骨干区域 A 使用 193-210, B 使用 1。

网管设备的 IP 地址的格式也是 A.B.C.D, 子网掩码为 255.255.255.0。A+B为区域号; C为网段号; D为网元号, 一般 设置为 250, 当同一机房多网管采用 hub 互联,该值设置范围选择 200~250。对于多个独立的子网,如果必须使用同一计算机网管 的情况下,就添加多个 IP 地址,绑定一个子网接入网元的 IP 地址 作为网关,并为其余子网添加路由。

在开局或扩容前,应对各网元和网管的 IP 地址有一个总体的安排。 若为骨干域则 A 为 192,为非骨干域使用 193-210。在实际组网中 网元数少的不要划分多区域,并且尽可能的不使用骨干区域。如 果子网中的网元数太多,建议超过 64 就划分为不同的区域(若超 过 128 则必须划分)。若在扩容过程中需增加站点,新增的站点 在保证 ID 不重复的前提下,IP 地址顺各区域按网元号递增。每次 工程若有 IP 地址的更新,必须反映在《工程资料》中。 5.2.2.4 IP 地址设定的规范

- 没有重复 IP 地址;
- 符合 IP 地址规划和顺序取值的规范;
- 文档记录规范;
- 网管计算机网络属性设置正确,可正常访问网元。

5.2.2.5 网关网元的设定

- 只在当前网管直接连接的网元设置网关网元;
- 文档记录规范。

5.2.2.6 其它信息的设定

- 根据网元实际应用情况和合同配置情况设置网元其他信息,如
 果合同配置和实际应用冲突时以实际应用进行设定;
- 网元名称小于等于 38 个字节;
- 网元标识从1到9999的整数;
- 系统类型、设备类型、速率等级、在/离线状态、建链状态、机 架配置、子架配置等设定按照 7.1 列表进行;
- 新建网元需要把网元状态改为离线,设定自动建链。

5.2.2.7 其它信息设定规范

- 网元属性设置正确, 网元工作正常;
- 按照规划设置数据;
- 文档记录规范。

5.2.3 硬件配置

硬件配置包括:单板安装面板图、NCP 数据设定和单板数据设定 三部分内容。

5.2.3.1 单板安装面板图

如图 5-4a 所示为单板安装面板图

1	2	3	4	5	6	7	8	9	10	11	12	13	14
					0.00		nur		10		10	10	
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	2	3	4	5	6	7	8	9	10	11	12	13	14

а

b

图 5-4 单板安装面板图

设定规范:

● 现场用户手中的工程资料必须包含此部分内容;

 根据用户实际应用情况和合同配置情况绘制单板安装面板图, 如果合同配置和实际应用冲突时以实际应用进行绘制;

- 填图需要安装 VISIO 软件,双击图 5-4b 中央进入编辑状态;
- 单板张贴采用的模板文件进行,将模板文件中的单板张贴到上面的面板图中,模板文件已经进行单板尺寸处理,直接张贴即可;
- 站点数量比较多时请将上图复制使用;
- 此部分内容需要在设备、网管上进行设定。

5.2.3.2 NCP 数据设定

如图 5-5所示为 NCP 数据传送示意图:

● NCP 的运行程序包括三部分内容:BOOTROM 引导程序、逻辑程序和在线升级程序;

● BOOTROM 程序通过烧片器烧结在 EEPROM 芯片上,芯片采用 SST 28SF040A 或其兼容芯片,芯片插座位置为 D15,不需在网管上设定;

● 逻辑程序通过烧片器烧结在 EEPROM 芯片上,芯片采用 SST 29LE010 或其兼容芯片,芯片插座位置为 D25/D26,不需在网管上设定;

● 在线升级程序和数据一起存储在专用的贴片 Flash 上;

NCP 数据的设定包括在线程序传送、程序烧结和地址配置两个部分;在线程序传送部分通过 ftp 完成,传送到 ncp 上后程序必须使用 f.bin 文件名,严禁直接使用 flash.BIN 文件名传送;程序烧结通过 telnet 到 ncp 后执行 prg 完成;地址配置通过 telnet 后执行 cfg 命令完成,如上图;

● NCP 地址配置前必须使用 dbe 将数据库擦除后再配置;

● 地址配置时配置 MAC 地址要求全网唯一,推荐规划为使用最 后两个字段表示网元 ID 号;

● 升级操作,一般来说对于数据库一定要擦除后再下载数据,可 以使用命令行清除或者网管清除,推荐使用网管清除。对于 M800, 下载数据库之前不需要专门擦除数据库;对于 1.1 设备,下载数据 库必须先刷新 FLASH。

NCP 数据设定规范

- 严格按照规划设置;
- 文档记录规范。

ZTE中兴

5.2.3.3 单板数据设定办法

单板设定必须在网管的网元单板对话框插入 NCP 前提下进行;

网管上设定方法:在客户端操作窗口中,双击拓扑图中的网元图标,进入单板管理对话框,单击配置按钮,在设备实际安装单板的槽位右击,弹出右键菜单,如图 5-6所示。在对话框中选择[实 安板]菜单,即可从 NCP 上读出实际安装单板信息,并显示在对话框中。

图 5-6 单板管理对话框

设备上设定方法:选择[系统 NCP 数据管理 数据库下载]菜 单,选择单板安装表,单击应用按钮,硬件配置就设置到设备上。 **单板板位设定规范:**

● 板位号配置与实际安装板位相符:

软硬件版本通过上载得到,不能人工配置,避免版本不一致问题;

- 模块配置通过上载得到,不能人工配置,避免模块不一致问题;
- 文档记录规范。

5.2.4 连接关系

连接关系包括:光放单板连接关系表、网管数据设置、尾纤标识 对应关系三部分内容。

5.2.4.1 光放单板连接关系

光放单板连接关系如下表 5-23所示。

源 网元	源单板	源端口	源 方向	目的 网元	目的单板	目的端口	目的 方向
А	OPA[0-1-13]	OTS_TTP_Sk 1	RX	В	SDMT[0-3-3]	OTS_TTP_So 1	ΤХ
А	SDMT[0-1-12]	OTS_TTP_So 1	ТΧ	В	OPA[0-3-1]	OTS_TTP_Sk 1	RX

表 5-23 光放单板连接关系

5.2.4.2 网管数据设定

网管数据设定方法:选择[配置 连接配置]菜单,弹出图示网 元连接对话框。

ZTE中兴

A - 3 - All and (All of the second (All of the second (10.79
Cases N=26 N=26 N=26 ALX 1 + 0_1 TT_1 TT 1 + 0_1 TT_1 TT 1 + 0_1 TT_1 TT ALX 1 + 0_1 TT_1 TT 1 + 0_1 TT_1 TT 1 + 0_1 TT_1 TT ALX 1 + 0_1 TT_1 TT 1 + 0_1 TT_1 TT 1 + 0_1 TT_1 TT	Lotin .
Desc[0=1-12] DES_UTY_D=1 Desk Desc[0=1-12] DES_UTY_D=1 DESk RA_D(n-12) DES_UTY_D=1 DESK DESK DESK_UTY_D=1 DESK DESK	_
986 (a.m. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	
and and the second	
and and the second seco	
104(10-0-2) (TL_TT/_2+) (K)A (M(10-0-1) (TL_TT/_2+) (K)A	

图 5-7 网元连接对话框

完成连接设置后,返回客户端操作窗口,在拓扑图中,建立光连 接的网元图标间有绿色连线相连,可参见图 5-3。

设定规范:

- 现场用户手中的工程资料必须包含此部分内容;
- 此部分内容为网管记录内容,不需要在设备上进行设定。

5.2.4.3 尾纤标识对应关系

为了维护及检索的方便,在开局或扩容工程中,应与局方商定业 务两端支路板端口与 DDF 架的对应关系,并在工程资料里做好相 应的记录。为了维护及检索的方便,在开局或扩容工程中,要求 有线缆连接的端口严格按照工程规范贴上标签。采用《中兴通讯 SDH、DWDM 传输工程标签规范》进行尾纤标识和张贴。保证:

- 现场用户手中的工程资料必须包含此部分内容;
- 端口整齐对应;
- 文档记录规范。

5.2.5 业务配置

业务配置包括: 接入业务配置、汇聚业务配置、连续速率业务配 置三部分。

5.2.5.1 接入业务配置

表 5-24 接入业务配置

单板类	型	端口	业务层	接入类型
SRM[0-1-5]	(示例)	光接入层的连接终端点的源 1	汇聚层	STM-4
OTU[0-1-5]	(示例)	光接入层的连接终端点的源 1	接入层	STM-1

网管设定方法:选择[配置 接入业务配置]菜单,在配置对话 框中选择网元,并选择是否汇聚层,设置业务后单击确定按钮, 即可将所选网元的接入业务配置记录到网管上。

设备上设定方法:选择[配置 接入业务配置]菜单,在配置对 话框中选择网元,并选择是否汇聚层,设置业务后单击应用按钮, 即可将所选网元的接入业务信息配置到设备上。

- 接入业务设置针对 otu 单板、srm41 单板和 srm42 单板;
- 配置完毕,通过查询核实查询值和设置值一致;

- 挂表确认业务连接正常;
- 业务类型与实际使用相符;
- 业务上下关系与实际使用相符;
- 业务上下波长与实际使用相符;
- 文档记录规范。

5.2.5.2 汇聚业务配置

单板类型	端口	通道状态
GEM[0-1-5]	光通道层路径终点源 1	上路
GEM[0-1-5]	光通道层路径终点宿 2	下路

表 5-25 汇聚业务配置

设置业务后单击确定按钮,即可将所选网元的接入业务配置记录 到网管上。

设备上设定方法:选择[配置 汇聚业务配置]菜单,在配置对 话框中选择网元,设置业务后单击应用按钮,即可将所选网元的 接入业务信息配置到设备上。

- 汇聚业务设置针对 GEM2 单板;
- 配置完毕,通过查询核实查询值和设置值一致;
- 挂表确认业务连接正常;
- 业务类型与实际使用相符;

- 业务上下关系与实际使用相符;
- 业务上下波长与实际使用相符;
- 文档记录规范。

5.2.5.3 连续速率业务配置

填写连续速率业务配置表,

单板类型	接入业务	锁定速率
	STM-1	STM-1
	STM-4	STM-4
0100[0-1-5]	STM-16	STM-16
	非 SDH 业务	非 SDH 业务
	STM-1	STM-1
	STM-4	STM-4
	STM-16	STM-16
	非 SDH 业务	非 SDH 业务

表 5-26 连续速率业务配置

网管上设定方法:选择[配置 连续速率业务配置]菜单,在配置对 话框中选择网元,设置业务后单击确定按钮,即可将所选网元的 接入业务配置记录到网管上;

设备上设定方法:选择[配置 汇聚业务配置]菜单,在配置对 话框中选择网元,设置业务后单击应用按钮,即可将所选网元的 接入业务信息配置到设备上。

- 连续速率业务设置针对 otuc 单板;
- 配置完毕,通过查询核实锁定速率和设置速率一致;

● 挂表确认业务连接正常;

如果自动锁定无法正确锁定接入业务频点,必须通过手工锁定
 辅助进行业务锁定;

- 业务类型与实际使用相符;
- 业务上下关系与实际使用相符;
- 业务上下波长与实际使用相符;
- 文档记录规范。

5.2.6 时钟配置

填写时钟配置表 5-27。

网元	单板	主从单板	期望时钟
网元 A	SRM[0-1-5]	主板	支路1时钟

表 5-27 时钟配置表

网管上设定方法:选择[配置 主从单板时钟配置]菜单如图 5-8, 在配置对话框中选择网元,设置时钟后单击关闭按钮,即可将所 选网元的时钟信息记录到网管上。

设备上设定方法:选择[配置 主从单板时钟配置]菜单,在图 5-8 配置对话框中选择网元,设置时钟后单击应用按钮,即可将所选 网元的时钟信息配置到设备上。

📲 主从单板时	持配置	
请选择网元	A	•
单板	SRM[0-1-5]	•
一 主从单板		
 主板 	○ 从板	
期望时钟	支路1时钟	•
实际时钟		
	应用 查询	关闭

图 5-8 时钟配置框

设定规范:

● 本功能针对 srm 单板对 SDH 信号同步而设计;

● 承载 SDH 业务的网络在正常运行及故障状态下都能运行在主 从时钟方式下。

• 主板配置定时源有以下几种方式:外时钟、支路1抽时钟、支路2抽时钟、支路3抽时钟、支路4抽时钟、内时钟,根据网元时钟连接情况进行设置,要求有外时钟情况下优先选择外时钟; 没有外时钟时优先选择支路1抽时钟,依次类推;没有支路时钟设置选择内时钟。

 1、从板配置定时源有以下几种方式:线路抽时钟、内时钟,要求 必须选择线路抽时钟,不能选择内时钟;

2、时钟配置不能对抽,不能成环;

3、时钟配置必须提前规划,按照规划设置数据;

4、时钟设置完毕,通过仪表测试没有指针调整和性能劣化;

5、文档记录规范。

5.2.7 公务配置

填写公务配置表

网元	公务号码	群呼	群呼密码	所属组号
А	992	允许	888	1

表 5-28 公务配置表

网管上设定方法:选择[配置 公务配置]菜单,在图 5-9配置对 话框中选择网元,设置公务后单击关闭按钮,即可将所选网元的 公务信息记录到网管上。

设备上设定方法:选择[配置 公务配置]菜单,在图 5-9配置对 话框中选择网元,设置公务后单击应用按钮,即可将所选网元的 公务信息配置到设备上。

📲 公务配置	
请选择网元 🛛	•
- 公务号码 - 公务号码 - 公务号码	- 群呼配重 で 群呼
992	群呼密码
	 所属组号
	1
查询 应用	关闭

图 5-9 公务配置

设定规范:

● 设置公务前提:必须安装公务板;

● 配置公务信息,使得各个网元之间可以通过公务进行联络,公务信息包括公务号码、公务群呼配置、群呼密码等;

可以对当前网元所在 Manager 的所有网元的的公务号码进行自动设置,单击自动配置按钮,系统将询问用户是否自动重新创建公务号码,若选择否,将保留原来有效的公务配置,若选择是,系统将产生新的合法号码覆盖原有的号码,合法的号码包括对每个网元的公务号码进行自动设置;

- 建议网络很大时候自动设置公务号码;
- 系统默认群呼密码为 888, 建议工程开通保留默认设置;
- 网络中所有网元电话号码设置有效,均可通话;

● 文档记录规范。

5.2.8 保护配置

5.2.8.1 保护单板设定

DWDM 网元支持的复用段保护方式包括链型复用段 1+1、链型复 用段 1:1、链型通道层 1+1、链型通道层 1:1、环型复用段二纤双 向共享、环型通道层二纤双向 1:1、环型通道层二纤双向 1+1、环 型通道层二纤双向共享;

链型复用段 1+1、链型通道层 1+1、环型通道层二纤双向 1+1、通 过配置 op 单板实现;

链型复用段 1:1、环型复用段二纤双向共享通过配置 opms 单板实现;

链型通道层 1:1、环型通道层二纤双向 1:1、环型通道层二纤双向 共享通过配置 opcs 单板实现。

5.2.8.2 复用段保护方式设定

当采用复用段共享保护环时,需设置复用段保护环,环路上各网 元的 APS ID 次序是从零开始,沿环路方向逐站增加编号;

复用段保护配置首先必须明确 a/b 向关系;

当采用复用段共享保护环时,不需设置复用段保护环,调整设置 保护环时的网元次序;起始网元(APS ID 为0)可以任意指定, 建议从中心站开始,序号不能有跳跃现象,最大序号为该保护倒 换环内网元数减1;

在网络运行正常情况下, APS 操作中启停操作应处于启动状态; 保护倒换恢复时间设置为 5 分钟; 网管进行复用段保护配置必须正确建立连接关系、客户关系、业 务配置、保护组和保护关系。

5.2.8.3 通道保护方式设定

当网络业务相对来说集中于一个网元时,建议采用通道保护,这 种情况下业务并发优收;

保护倒换网管上可以设置为返回和非返回方式,返回方式规定只 要工作通道正常业务永远工作在工作通道,请根据现场用户保护 实际需要进行配置,工程默认采用返回式配置;

采用返回式通道保护配置,工作通道恢复正常后,保护倒换到工 作通道恢复时间设置为5分钟;

通道保护倒换采用功率检测方式进行,倒换功率门限采用默认设 置。

5.2.8.4 保护设定规范

- 保护倒换测试正常;
- 文档记录规范。

5.2.9 人身安全配置

人身安全是从人眼安全考虑,避免光口出光过强导致人眼损伤的 设计。人身安全设置包含业务连接光板(如 srm41、srm42、otuc 等)线性保护使能设置和主光通道光板(oa)APR 设置两部分。

5.2.9.1 线性保护使能设定

- 工程开通后必须将所有单板的线性保护使能置允许状态;
- 线性保护使能功能测试正常;
- 文档记录规范。

5.2.9.2 APR 组设定

- 在网管上正确配置 APR 组;
- 工程开通后查询 OA 单板的 APR 状态必须是启动状态;
- APR 功能测试正常;
- 文档记录规范。

5.2.10 开销配置

5.2.10.1 开销字节透明传送配置

- 本功能针对 srm42 单板对 SDH 帧结构开销透传而设计;
- SRM42 单板对标准开销,无需要在网管上进行设置,均为透传,包括 B1,B2, J0, E1, E2, F1, K1, K2, D1~D12, M1;
- 对于支路输入的非标准开销,可以通过网管设置实现透传,每
 个支路最多支持 16 个非标准开销的透明传输;
- 网管配置采用帧结构行列方式进行,配置非标准开销透传必须 熟悉 SDH 帧结构和需要透传字节的位置;
- 配置完毕,通过仪表发生非标准开销字节测试单板透传正常;
- 文档记录规范。

5.2.10.2 用户透明通道配置

- 用户透明通道提供用户环境监控接入功能;
- 用户透明通道最多支持 8 个 64kbit/s 时隙绑定;

● 用户透明通道只支持点对点的连接配置,不支持点对多点的配置;

● 用户透明通道支持 RS232 和 RS422 两种接口,但上下游必须成 对使用;

- 配置完毕,通过笔记本超级终端测试通道正常;
- 文档记录规范。

5.2.11 维护配置

5.2.11.1 设置网元时间

新开局网元网元时间会自动使用网管计算机的系统时间,当网元 时间与计算机时间不同时,可以使用组广播校时来校准,尽量不 要采用广播校时。

设定规范:

- 时间设置正确;
- 全网基本一致。

5.2.11.2 J0 配置

为防止光纤错联,进行通道软标识区分,通道层单板引入 J0 配置 和识别功能。

设定规范:

- 单板预设置 J0(期望值)必须和接入业务层过来的 J0 一致;
- 配置完毕,通过查询核实配置值和实际值一致;
- 文档记录规范。

5.2.11.3 激光器状态

设定规范:

 ● 运行中的单板必须保证激光器打开状态,禁止无故关断激光器 操作;

● 线性保护使能启动状态的单板,如果输入无光情况下,单板激
 光器会自动关闭,此时禁止人工打开激光器操作;

● 文档记录规范。

5.2.11.4 FEC 设置

设定规范:

- FEC 根据使用情况分为发端 fec、收端 fec 和中继 fec;
- 承载业务并正常运行的单板 ,禁止修改 fec 状态或者将 fec 功能 关闭操作 ;
- 仪表进行单机测试时,必须将 fec 功能关闭;
- 文档记录规范。

5.2.11.5 复位单板

设定规范:

- 单板复位操作有三个选项:软件复位、硬件复位和业务层复位;
 其中软件和硬件复位都是针对单板监控电路的复位操作,复位不影响业务,但复位操作过程中网管失去监控该单板的能力;业务
 层复位是针对业务层处理电路的硬件复位操作,复位影响运行业务,复位过程中网管仍然具备对该单板监控的能力;
- 承载业务的单板禁止进行业务层复位操作;
- 文档记录规范。

5.2.11.6 OPM 单板

设定规范:

- 正确连接需要监测点;
- 网管上正确选择需要监控的端口;

● 通过仪表校准并正确通过网管设置 OPM 插损,保证网管读取 值和仪表偏差控制在:测量中心波长的精度±0.1nm,测量功率的 精度±1.0dB,测量光信噪比的精度±1.5dB;

● 文档记录规范。

5.2.11.7 设置重要数据

设定规范:

- 本设置内容仅限研发人员进行;
- 现场开通、调试人员不得擅自修改单板寄存器;
- 现场开通、调试人员可以使用查询功能,取得单板重要数据信息;
- 此部分只做记录;
- 文档记录规范。

5.2.11.8 设置单板寄存器

设定规范:

- 本设置内容仅限研发人员进行;
- 现场开通、调试人员不得擅自修改单板寄存器;
- 此部分不做任何记录和操作。

5.2.11.9 功率调整

设定规范:

● 现场开通和日常维护必须保证 OA 单板调整增益值置零位置;

● 一旦发生线路衰减变化,进行 OA 单板功率调整;线路衰减增 大,OA 单板调整增益值往正方向调;线路衰减减小,OA 单板调 整增益值往负方向调;

● 线路衰减发生变化, OA 单板增益调整后应及时通知用户进行 光缆线路整改;

● 光缆线路衰减恢复正常,应该及时恢复 OA 单板调整增益值置 零位置;

- 此部分需要根据现场情况及时记录、更新;
- 文档记录规范。
- 5.2.11.10 波长调整
 - 本设置内容仅限研发人员进行;
 - 现场开通、调试人员不得擅自进行波长调整操作;
 - 此部分不做任何记录和操作。

5.2.11.11 风扇调速使能配置

- 工程开通和维护默认设置自动调试;
- 此部分不做任何记录和操作。

5.2.12 数据相关配置

5.2.12.1 网管目录结构及备份数据规范

网管计算机硬盘上应有如下目录及相应文件:

C:\ZXONM_E300 WINDOWS 系列操作系统下的网管目录

C:\ZXONM_E300\db\backup\configWindows 网管数据的缺省备份目录。

C:\ZXONM_E300\agent Windows 网管程序的重要常用文件 目录

/opt/unitrans UNIX 操作系统下的网管目录

/opt/unitrans/db/ backup\config unix 网管数据的缺省备份目录。

windows 桌面上应放置 server 和 gui 的快捷方式,以光、软盘形式 或者优盘形式备份当前网络数据、网管程序安装盘等相关记录文 档交给局方保存。

设定规范:

- 目录命名规范、备份数据完善,版本有效;
- 注意网管数据文件量过大和根目录空间的维护;
- 文档记录规范。

5.2.12.2 性能数据的设定

系统缺省设置 24 小时性能起始时间是 0 时整,采集间隔为一天; 15 分钟性能采集时间间隔 120 分钟。光板和数据板性能劣化时不 发生倒换。开局时考虑到用户实际需求,可以对上述性能门限根 据需要进行设置,一般采用缺省设置即可。

设定规范:

- 网管性能数据监视上报正确规范;
- 网管性能数据库级别设置正确规范;
- 如果改变缺省设置必须在工程资料里记录清楚。

5.2.12.3 告警数据的设定

系统缺省不对告警屏蔽和预投入进行设置。对于已经配置但未使 用业务,要用告警反转功能消除该告警。开局时考虑到用户实际 需求 , 可以对告警的屏蔽、告警严重程度、自动确认时间甚至告 警的声音和颜色等进行设置 , 建议采用缺省设置。

设定规范:

- 网管告警监视数据上报正确;
- 网管告警数据库级别设置正确规范;
- 如果改变缺省设置必须在工程资料里记录清楚。

5.2.12.4 安全数据的设定

安全管理用户级别分为四个等级,不同的用户级别具有不同的权限,高级用户拥有低级用户的所有的权限,其中系统监视员可以 监视系统的告警/性能数据的改变,不允许对系统做任何修改操作; 操作维护员可以进行告警可视状态等不影响业务的操作;系统维 护员可以进行网管系统的日常维护,包括业务配置数据的修改、 事件设置/性能门限的修改、维护测试等;系统管理员作为最高级 别的用户拥有所有的管理功能。各个级别的用户写操作权限范围 可以由系统管理员设置。

开局时,用缺省用户名为 root,口令为空,登录后,应根据局方的要求增加各级别用户并对口令进行设置。四个级别的网管用户 设置方法见网管帮助。对于网管计算机需加设开机口令、COMS 设置口令和屏幕保护口令。

工程移交前必须设置一个系统监视员的帐号,交给局方人员日常 登陆。

设定规范:

- 网管用户设置慎重、规范;
- 网管计算机各项口令设置由机房管理人员统一管理;

● 如果改变命令缺省权限必须在工程资料里记录清楚。

5.2.12.5 打印机的设定

为了使用网管的报表功能,需要安装打印机及打印机的驱动程序。 在"控制面板"-"打印机"-"添加打印机"中根据实际情况添加 打印机。如计算机未接打印机但想使用预览功能,可选择一常用 打印机进行设置,如 LQ-1600K(厂商为 EPSON)。

设定规范:

● 打印机设置正确,可正常打印。

5.2.12.6 报表的设定

设定规范:

● 报表的预览和打印正常。

5.2.12.7 远程维护

采用广域网连接方式可以实现远程网络管理,常用的连接方式有 DDN 专线方式、2M 专线方式、PSTN 拨号方式。

对于每种方式,要求把配置信息打印出来贴在该路由器或 MODEM上。比如,路由器密码、IP 地址等。

设定规范:

● MODEM 参数设置正确,支持远程维护;

● 尽量避免使用远程网管监控的传输网络内的电路做中继以防网
 络故障时恰好网管无法监控。

5.3 工程巡检操作

工程巡检中涉及的主要操作包括:告警查询和处理、功率平坦达 标情况查询和处理、网络性能查询和处理、保护倒换(其他功能) 测试。

5.3.1 工程巡检操作流程

图 5-10 巡检操作流程

工程巡检工作开始:

● 首先必须进行的操作是当前告警和3个月内历史告警(这里指的告警包括当前告警、历史告警、当前越门限告警、历史越门限告警、历史杂合事件、历史保护倒换事件等告警信息),对采集的告警信息进行分析,检查是否存在原因不明的告警事件。输出告警采集记录和分析报告。

● 如果存在原因不明的告警事件并定位是系统性能方面原因,继续进行当前性能和3个月内历史性能(针对 OTUM 进行的误码性能查询),对采集的性能信息进行分析,确认是否可以定位问题,如果可以,需要精确到天将故障信息进行收集和分析。输出性能采集记录和分析报告。

 然后进行通道层、复用段层各通道功率、平坦度和达标程度的 检查。当然对于系统性能查询无法定位的问题也进入此操作步骤。 查询当前性能和 3 个月内历史性能(针对各通道进行的光功率性 能查询),对采集的性能信息进行分析,确认是否可以定位问题, 如果可以,需要精确到天将故障信息进行收集和分析。输出性能 采集记录和分析报告。

对于步骤(3)都无法定位的问题,需要将操作过程、分析报告
 一道提交现场问题反馈系统,成立专门团队处理现场问题。

 进行保护倒换、业务接口、透明用户数据通道、公务等方面功 能测试,确认系统业务功能正常。输出测试记录、故障分析报告、 故障处理方案和预防措施建议。

● 巡检操作工作结束,输出巡检操作总结、巡检报告。并就巡检报告中的内容和用户交流,给用户提出合理的维护、日常检查工作建议。

5.3.2 当前告警查询

5.3.2.1 操作目的

前往工程现场巡检首先必须查询各网元当前告警情况,详细记录 各告警,并逐个分析各告警发生原因和是否存在潜在隐患,注意 过程中把握网元之间告警的关联性。

能当时解决的予以解决,不能立即解决的必须给相关维护部门和 人员提出合理、可靠、完善的解决方案和意见。

5.3.2.2 当前告警原理和特点

通过 Manager 下发查询命令请求事件数据 , 或由 NCP 板主动上报 事件数据实现告警监视。实时检测和报告网络中出现的告警事件 和设备工作状况。

5.3.2.3 查询办法

● 在客户端操作窗口中,选择网元,再单击主菜单中的[告警 当前告警]菜单项。

- 在客户端操作窗口的导航树或拓扑图中,选择网元,右击弹出的右键菜单,选择[当前告警]菜单项。
- 在客户端操作窗口中,选择网元,再单击工具条中的 按钮。

在客户端操作窗口中,双击网元,打开单板管理对话框,右击
 待查询告警的单板,在弹出的单板右键菜单中选择[当前告警]菜单
 项。

● 一般查询

步骤一:在[请选择网元]下拉列表框中选择需要查询告警的网元, 或者默认当前所选网元,网元将上报当前告警信息并在对话框中 显示。 步骤二:单击[实时显示告警]前的选择框,当选择框内有符号" ' 时,告警主动上报,实时刷新;当选择框内为空时,单击<刷新> 按钮,刷新告警信息。

● 条件查询

步骤一:在[请选择网元]下拉列表框中选择需要查询告警的网元, 或者默认当前所选网元,网元将上报当前告警信息并在对话框中 显示。

步骤二:单击<查询设置>按钮,弹出告警查询设置对话框常规页 面,选择检测板、检测点、告警原因、严重性以及时间段。

步骤三:如果需要将告警类型和确认信息作为查询条件,单击[高级],进入高级页面,确定查询告警的类型和确认信息。

步骤四:单击告警查询设置对话框的<应用>按钮,保存查询设置, 单击<关闭>按钮,返回当前告警对话框。

步骤五:单击当前告警对话框中的<查询>按钮,网元将上报符合 查询条件的告警并在对话框中显示。

● 清除、确认告警

步骤一:参照(5)或(6)所述操作查询告警。

步骤二:在对话框的当前告警显示列表中,选择需要清除或确认 的告警,所选告警反白显示。

步骤三:单击[确认]列按钮,当按钮内有黑点时,确认告警,单击 <确认>按钮,对话框中记录确认用户和确认时间;单击<清除>按 钮,删除该告警记录。

● 其他说明:

(1)、在选择告警时,单击进行单选;按住<Shift>或<Ctrl>键, 再单击进行多选。再次单击将取消对该对象的选择。 (2)、在当前告警对话框的[确认]列中,红色图标表示紧急告警, 橙色图标表示主要告警,黄色图标表示次要告警,紫色图标表示 警告告警。

(3)、选择一条上报的告警,在下方的显示框中将提示告警原因 或解决方法。

5.3.2.4 界面说明

如图 5-11所示为当前告警框:

RRAFIE.	649	-					
**[**!]	1.80	1.000	*\$85	 1.000	849	Mate	 1.5
			annes.	 			 -

图 5-11 当前告警框

(1) 请选择网元:显示当前所选的网元,并可在下拉列表框中选择客户端操作窗口中选择的其他网元。

(2) <查询设置>按钮:用于设置告警的查询条件。单击<查询设 置>按钮,弹出告警查询设置对话框,包括[常规]和[高级]2个页面。

● [常规]页面

12 古然 立向说来 12 18 - 高点		
		含蓄原因 ● 主原法算 熱授者等 校不正配言等 輸入現代者等 輸入現代者等 輸入現代者等 輸入現代者等 輸入現代者等 体列子和用者等 (本見のつ (m) ● 第 (本見のつ (m) ● 第 (本見のの (m) ● 第)
告寄戸重社 17 派急 17 主要 17 次要 17 警告	时间段 从: 1900 1 1 到: 3000 1 1	MISING C

图 5-12 告警查询设置对话框(常规)

[检测板]:列出当前所选网元安装的所有单板。当前所选检测板 反白显示,支持多选,通过符号 • 标识已经选择的检测板。

[检测点]:列出当前所选检测板支持的告警检测点。当前所选检 测点反白显示,支持多选,通过符号 • 标识已经选择的检测点。

[告警原因]:列出当前所选检测点可检测的告警。当前所选告警 反白显示,支持多选,通过符号 ● 标识已经选择的告警。

[告警严重性]:选择待查询告警的严重级别。选择框为空表示不 查询此级别告警;选择框内有符号""表示查询此级别告警。 支持多选。

[时间段]:设置告警产生的时间段。如果未启用[启用时间](选 择框为空),网管将上报到目前为止所有未消失的告警;如果启 用[启用时间](选择框内有符号""),网管将上报在时间段 范围之内产生,但目前仍未消失的告警。

● [高级]页面

<mark>望</mark> 告答查询说罢		
*R #41		
- 周以明戸	音響类型	
	戸 通信	12 服务质量
	12 处理接续	응용 직
	17 环境	
	anci de la	
	17 己經第2	17 还统确认
		<u>尼</u> 用 美術

图 5-13 告警查询设置对话框(高级)

[告警类型]:查询告警的类型,包括通信、服务质量、处理差错、 设备、环境。选择框内有符号""表示查询此类型告警。支持 多选。

[确认信息]:查询告警的确认情况,包括已经确认和还没确认。 选择框内有符号""表示查询此确认情况告警。支持多选。

[确认用户]:告警的确认用户。目前暂不支持。

(3)当前告警显示列表:显示当前所选网元的告警信息,包括
[序号]、[确认]、[检测板]、[检测点]、[告警原因]、[来源板]、
[来源端口]、[通道号]、[开始时间]、[性能值]、[确认用户]、[确
认时间]、[告警严重性]和[告警类型]信息。

(4) 实时显示告警:是否实时刷新告警。选择框为空表示不实时刷新告警;选择框内有符号""表示实时刷新。系统默认为 实时显示告警状态。

5.3.2.5 操作要点

ZTE中兴

● 注意分析网元间相关联的告警。比如上游 otug 输入存在无光告
警,下游 otug 必然会有失锁告警。

● 注意从原理分析问题。比如目前 oa (edfa)都有嵌位输出功能, 因此光缆中断时只有两个站点出现 oa 对告,其他站点的 oa 不发 生告警。

- 注意区分真实告警和误告。
- 注意性能门限设置带来的告警,如性能超值告警。
- 注意发现瞬间出现和频繁发生的告警。

5.3.3 历史告警查询

5.3.3.1 操作目的

工程巡检最主要的目前就是发现网络运行中潜在的问题和隐患, 因此前往工程现场巡检至少必须查询各网元<u>3个月</u>历史告警情况, 详细记录各告警,并逐个分析各告警发生原因和是否存在潜在隐 患,注意过程中把握网元之间告警的关联性。

能当时解决的予以解决,不能立即解决的必须给相关维护部门和 人员提出合理、可靠、完善的解决方案和意见。

5.3.3.2 历史告警原理和特点

完成对某一时间段、网元、单板的历史告警记录的管理,包括查询、确认、清除、打印操作。当前检测和报告网络中出现的告警 事件和设备工作状况等信息会自动入库到网管的历史告警库中, 客户端程序通过服务器请求数据库提供相关信息。

5.3.3.3 查询办法

● 在客户端操作窗口中,选择网元,再单击主菜单中的[告警 历 史告警]菜单项。

 在客户端操作窗口的导航树或拓扑图中,选择网元,右击弹出 右键菜单,选择[历史告警]菜单项。

● 查询历史告警

步骤一 : 在[请选择网元]下拉列表框中选择需要查询告警的网元 , 或者默认当前所选网元。

步骤二:单击<查询设置>按钮,弹出告警查询设置对话框常规页 面,选择检测板、检测点、告警原因、严重性以及时间段。

步骤三:如果需要将告警类型和确认信息作为查询条件,单击[高 级],进入高级页面,确定查询告警的类型和确认信息。

步骤四:单击告警查询设置对话框的<应用>按钮,保存查询设置, 单击<关闭>按钮,返回历史告警对话框。

步骤五:单击历史告警对话框中的<查询>按钮,网元将上报符合 查询条件的告警并在对话框中显示。

● 查询备份文件中的告警

步骤一:在[请选择网元]下拉列表框中选择需要查询告警的网元 , 或者默认当前所选网元。

步骤二:选中[查询备份文件],激活并单击<备份信息>按钮,弹出 备份信息对话框。注意必须选择 查询备份文件 按钮,将 框 点为 ,即选择从网管数据库中进行查询。

步骤三:如果备份信息保存在缺省目录中,选中[搜索缺省目录], 输入框内显示缺省备份文件路径;如果备份信息位于用户自定义 目录,单击[搜索缺省目录]前的圆形按钮,取消搜索缺省目录,输 入备份文件所在路径。点击窗口中^{备份信息}按钮,弹出备份信息 对话框,等待空白栏中d:/ZXOXM_E300/db/backup/dump信息出现 后单击 确定按钮关闭对话框。

步骤四:单击<确定>按钮,查找备份文件并返回历史告警对话框。 步骤五:单击历史告警对话框中的<查询>按钮,显示备份文件内 容。

● 确认告警

步骤一:参照(3)所述操作查询告警。

步骤二:在对话框的历史告警显示列表中,选择需要确认的告警, 所选告警反白显示。

步骤三:单击[确认]列按钮,当按钮内有黑点时,确认告警,单击 <确认>按钮,对话框中记录确认用户和确认时间。

● 清除告警

步骤一:参照(3)所述操作查询告警。

步骤二:在对话框的历史告警显示列表中,选择需要清除的告警, 所选告警反白显示,单击<清除>按钮,删除该告警记录;单击< 全部删除>按钮,清空所有告警记录。

●其他说明:

 1、在历史告警查询过程中,如果在一段时间内,告警仍未上报, 单击历史告警对话框中的<停止等待>按钮,暂停本次查询操作。

2、在选择告警时,单击进行单选;按住<Shift>或<Ctrl>键,再单击进行多选。再次单击将取消对该对象的选择。

3、在当前告警对话框的[确认]列中,红色图标表示紧急告警,橙 色图标表示主要告警,黄色图标表示次要告警,紫色图标表示警 告告警。

4、选择一条上报的告警,在下方的显示框中将提示告警原因或解 决方法。

5.3.3.4 界面说明

R.R.B										1000
-		144		- (*****						
-		1.000	1.4	****	6,81		##9	194216		1.44
	1	_	_		-	1				1
***			******							- 14
141	1.	101.00	10				1985 3 8	1	1.84	10.00

图 5-14 当前告警对话框

(1)、请选择网元:显示当前所选的网元,并可在下拉列表框中选择客户端操作窗口中选择的其他网元。

(2)、<查询设置>按钮:用于设置历史告警的查询条件。单击< 查询设置>按钮,弹出告警查询设置对话框,包括[常规]和[高级]2 个页面。

12 告答查询说罢	
18.92 (A6.02)	
	 ・ 金額法算 ・ 金額法 ・ 金額 ・ 金 ・ 金額 ・ 金 ・ 金 ・ 金
告娶严重性 17 派急 17 主要 17 次要 17 警告	83년 문 사 : 2004 - 4 - 7 - 0 - 0 - 0 월 : 2004 - 7 - 7 - 21 - 48 - 48 F 문 문 관 : 1
	<u>泉</u> 用

● [常规]页面

图 5-15 告警查询设置对话框(常规)

[检测板]:列出当前所选网元安装的所有单板。当前所选检测板反 白显示,支持多选,通过符号 • 标识已经选择的检测板。

[检测点]:列出当前所选检测板支持的告警检测点。当前所选检测 点反白显示,支持多选,通过符号 • 标识已经选择的检测点。

[告警原因]:列出当前所选检测点可检测的告警。当前所选告警反 白显示,支持多选,通过符号 ● 标识已经选择的告警。

[告警严重性]:选择待查询告警的严重级别。选择框为空表示不查 询此级别告警;选择框内有符号""表示查询此级别告警。支 持多选。

[时间段]:设置历史告警产生的时间段。

●[高级]页面

告告查询设置		
20.6 B.C		1
- 時以用户	告警兵型	
	12 通信	12 服务质量
	₩ 处理差绪	두 성종
	17 环境	
	- WARE	
	臣 非被定	299 可
		皮用 关闭

图 5-16 告警查询设置对话框(高级)

[告警类型]:查询告警的类型。

[确认信息]:查询告警的确认情况。

[确认用户]:告警的确认用户。目前暂不支持。

(3) 历史告警显示列表:显示当前所选网元的历史告警信息, 包括[序号]、[确认]、[检测板]、[检测点]、[告警原因]、[来源板]、 [来源端口]、[通道号]、[开始时间]、[结束时间]、[经历时间]、[性 能值]、[确认用户]、[确认时间]、[清除告警用户]、[告警严重性] 和[告警类型信息]。

(4) NCP 全量采集:是否要求 NCP 板上报时间范围之内的全部 历史告警。当[NCP 全量采集]的选择框内有符号""时,每次 查询命令都要求 NCP 板上报所有历史告警;当[NCP 全量采集]的 选择框为空时,NCP 板仅上报新的告警。

(5) 查询备份文件:当选中[查询备份文件]时,激活<备份信息 >按钮。 (6) <备份信息>按钮:输入备份文件所在位置。仅当[查询备份 文件]选择框内有符号""时,<备份信息>按钮被激活。单击< 备份信息>按钮,弹出备份信息对话框,如图 5-17所示。

≝ <mark>∎</mark> 备份信息	_	u×
C:/Program Files/ZTE/ZX08M_E300/db/	/backup/dump	
@ 搬来缺省目录	頭定 取消]

图 5-17 备份信息对话框

对话框中显示备份文件的路径。当[搜索缺省目录]前的圆形按钮 为 🖸 状态时,对话框显示缺省目录位置。

5.3.3.5 操作要点

- 注意分析网元间相关联的告警。比如上游 otug 输入存在无光告警, 下游 otug 必然会有失锁告警。
- 注意从原理分析问题。比如目前 oa (edfa)都有嵌位输出功能, 因此光缆中断时只有两个站点出现 oa 对告,其他站点的 oa 不发 生告警。
- 注意区分真实告警和误告。
- 注意性能门限设置带来的告警,如性能超值告警。
- 注意发现历史上瞬间出现和频繁发生的告警。
- 注意排除历史上光缆割接或者设备更换出现的相应告警。

5.3.4 当前越门限告警

5.3.4.1 操作目的

前往工程现场巡检,通过查询告警可以了解业务中断、信号失锁、 监控失效等信息,但是系统误码、性能越限等信息无法通过告警 查询了解到。因此必须查询各网元当前越门限告警情况,详细记 录各告警,并逐个分析各告警发生原因和是否存在潜在隐患,注 意过程中把握网元之间告警的关联性。通过越门限告警查询可以 发现系统工作性能方面的情况。

能当时解决的予以解决,不能立即解决的必须给相关维护部门和 人员提出合理、可靠、完善的解决方案和意见。

5.3.4.2 当前越门限告警原理和特点

当性能事件的性能值超过设定的性能门限时,网元将上报越门限 告警。当前越门限告警用于检测和报告网络中出现的越门限告警。

5.3.4.3 查询办法

(1) 在客户端操作窗口中,选择网元,再单击主菜单中的[告警 当前越门限告警]菜单项。

(2) 在客户端操作窗口的导航树或拓扑图中,选择网元,右击 弹出右键菜单,选择[当前越门限告警]菜单项。

(3) 一般查询

步骤一:在[请选择网元]下拉列表框中选择需要查询告警的网元, 或者默认当前所选网元,网元将上报当前越门限告警信息并在对 话框中显示。

步骤二:单击[实时显示告警]前的选择框,当选择框内有符号""时,告警主动上报,实时刷新;当选择框内为空时,单击<刷新>按钮,刷新告警信息。

(4) 条件查询

步骤一:在[请选择网元]下拉列表框中选择需要查询告警的网元, 或者默认当前所选网元,网元将上报当前越门限告警信息并在对 话框中显示。

步骤二:单击<查询设置>按钮,弹出告警查询设置对话框常规页面,选择检测板、检测点、告警原因、严重性以及时间段。

步骤三:如果需要将告警类型和确认信息作为查询条件,单击[高级],进入高级页面,确定查询告警的类型和确认信息。

步骤四:单击告警查询设置对话框的<应用>按钮,保存查询设置, 单击<关闭>按钮,返回当前越门限告警对话框。

步骤五:单击当前越门限告警对话框中的<查询>按钮,网元将上 报符合查询条件的告警并在对话框中显示。

(5) 清除、确认告警

步骤一:参照(3)或(4)所述操作查询告警。

步骤二:在对话框的当前越门限告警显示列表中 , 选择需要清除 或确认的告警 , 所选告警反白显示。

步骤三:单击[确认]列按钮 , 当按钮内有黑点时 , 确认告警 , 单击 <确认>按钮 , 对话框中记录确认用户和确认时间;单击<清除>按 钮 , 删除该告警记录。

(6) 其他说明:

● 在选择告警时,单击进行单选;按住<Shift>或<Ctrl>键,再单 击进行多选。再次单击将取消对该对象的选择。

在当前越门限告警对话框的[确认]列中,红色图标表示紧急告
 警,橙色图标表示主要告警,黄色图标表示次要告警,紫色图标表示警告告警。

 ●选择一条上报的告警,在下方的显示框中将提示告警原因或解 决方法。

5.3.4.4 界面说明

Constitute .	1781
88 mi 1880	
	<u>ل</u>
	4
	AND A CONTRACT OF A CONTRACT.

图 5-18 当前越门限告警对话框

(1) 请选择网元:显示当前所选的网元,并可在下拉列表框中选择客户端操作窗口中选择的其他网元。

(2) <查询设置>按钮:用于设置告警的查询条件。单击<查询设置>按钮,弹出告警查询设置对话框,包括[常规]和[高级]2个页面。

● [常规]页面

1 ASSANCE		
	松満点 ● 全部法律 参校 大選道院的连接特現点会 大選道院的连接特現点会 大選道院的连接特現点会 中選道院的注意特定現点会	
011年 11-51 011年 62[0-1-6] 011年 64[0-1-6] 011年 64[0-1-6] 11年 64[0-1-6] 11年 64[0-1-6]	大道道をの注意けていた。 大道道をの注意けていた。 大道道をの注意けれた。 い道が見たって知られた。	●0-0-0-0日 ● ●55大音響 信号不可用音響 (本品のな / Kn)考整 ■
戸主要 戸注要 戸参告	M: 1900 1 1 1 M: 3000 1 1 1	Riake
		虚用 美術

图 5-19 告警查询设置对话框(常规)

[检测板]:列出当前所选网元安装的所有单板。当前所选检测板反白显示,支持多选,通过符号 • 标识已经选择的检测板。

[检测点]:列出当前所选检测板支持的告警检测点。当前所选检测 点反白显示,支持多选,通过符号 • 标识已经选择的检测点。

[告警原因]:列出当前所选检测点可检测的告警。当前所选告警反 白显示,支持多选,通过符号 ● 标识已经选择的告警。

[告警严重性]:选择待查询告警的严重级别。选择框为空表示不查 询此级别告警;选择框内有符号""表示查询此级别告警。支 持多选。

[时间段]:设置告警产生的时间段。如果未启用[启用时间](选择框为空),网管将上报到目前为止所有未消失的告警;如果启用[启用时间](选择框内有符号""),网管将上报在时间段范围之内产生,但目前仍未消失的告警。

● [高级]页面

😫 古普查询说罢		
%R 26.0		
	音響类型	
	₽ 遺信	17 服务负量
	12 处理差结	요양 의
	口 环境	
	朝以信息	
	17 四極勝以	17 连统输入
		<u>- </u> 泉用

图 5-20 告警查询设置对话框(高级)

[告警类型]:查询告警的类型,包括通信、服务质量、处理差错、 设备、环境。选择框内有符号""表示查询此类型告警。支持 多选。

[确认信息]:查询告警的确认情况,包括已经确认和还没确认。 选择框内有符号""表示查询此确认情况告警。支持多选。

[确认用户]:告警的确认用户。目前暂不支持。

(3)当前告警显示列表:显示当前所选网元的告警信息,包括
[序号]、[确认]、[检测板]、[检测点]、[告警原因]、[来源板]、
[来源端口]、[通道号]、[开始时间]、[性能值]、[确认用户]、[确
认时间]、[告警严重性]和[告警类型]信息。

(4) 实时显示告警:是否实时刷新告警。选择框为空表示不实时刷新告警;选择框内有符号""表示实时刷新。系统默认为 实时显示告警状态。

5.3.4.5 操作要点

- 注意分析网元间相关联的越门限告警。比如上游 otug 输入存在 b1 性能超值告警,下游 otug 必然会有 b1 性能超值告警。
- 注意区分真实越门限告警和误告。
- 注意发现瞬间出现和频繁发生的越门限告警。

5.3.5 历史越门限告警

5.3.5.1 操作目的

工程巡检最主要的目前就是发现网络运行中潜在的问题和隐患, 因此前往工程现场巡检至少必须查询各网元 <u>3 个月</u>历史越门限告 警情况,了解历史网络系统性能情况,详细记录各告警,并逐个 分析各告警发生原因和是否存在潜在隐患,注意过程中把握网元 之间告警的关联性。

能当时解决的予以解决,不能立即解决的必须给相关维护部门和 人员提出合理、可靠、完善的解决方案和意见。

5.3.5.2 历史越门限告警原理和特点

完成对某一时间段历史越门限告警记录的管理,包括查询、确认、 清除、打印操作。当前检测和报告网络中出现的告警事件和设备 工作状况等信息会自动入库到网管的历史告警库中,客户端程序 通过服务器请求数据库提供相关信息。

5.3.5.3 查询办法

- (1) 在客户端操作窗口中,选择网元,再单击主菜单中的[告警 历史越门限告警]菜单项。
- (2) 查询历史越门限告警

步骤一:在[请选择网元]下拉列表框中选择需要查询告警的网元 , 或者默认当前所选网元。

步骤二:单击<查询设置>按钮,弹出告警查询设置对话框常规页 面,选择检测板、检测点、告警原因、严重性以及时间段。

步骤三:如果需要将告警类型和确认信息作为查询条件,单击[高级],进入高级页面,确定查询告警的类型和确认信息。

步骤四:单击告警查询设置对话框的<应用>按钮,保存查询设置, 单击<关闭>按钮,返回历史越门限告警对话框。

步骤五:单击历史越门限告警对话框中的<查询>按钮,网元将上 报符合查询条件的告警并在对话框中显示。

(3) 查询备份文件中的告警

步骤一:在[请选择网元]下拉列表框中选择需要查询告警的网元, 或者默认当前所选网元。

步骤二:选中[查询备份文件],激活并单击<备份信息>按钮,弹出 备份信息对话框。注意必须选择 「查询备份文件按钮,将「框 点为 「,即选择从网管数据库中进行查询。

步骤三:如果备份信息保存在缺省目录中,选中[搜索缺省目录], 输入框内显示缺省备份文件路径;如果备份信息位于用户自定义 目录,单击[搜索缺省目录]前的圆形按钮,取消搜索缺省目录,输 入备份文件所在路径。点击窗口中^{备份信息}按钮,弹出备份信息 对话框,等待空白栏中d:/ZX01M E300/db/backup/dump信息出现 后单击 确定按钮关闭对话框。

步骤四:单击<确定>按钮,查找备份文件并返回历史越门限告警 对话框。 步骤五:单击历史越门限告警对话框中的<查询>按钮,显示备份 文件内容。

(4) 确认告警

步骤一:参照(3)所述操作查询告警。

步骤二:在对话框的历史越门限告警显示列表中,选择需要确认的告警,所选告警反白显示。

步骤三:单击[确认]列按钮,当按钮内有黑点时,确认告警,单击 <确认>按钮,对话框中记录确认用户和确认时间。

(5) 清除告警

步骤一:参照(3)所述操作查询告警。

步骤二:在对话框的历史越门限告警显示列表中,选择需要清除 的告警,所选告警反白显示,单击<清除>按钮,删除该告警记录; 单击<全部删除>按钮,清空所有告警记录。

(6) 其他说明:

 在历史越门限告警查询过程中,如果在一段时间内,告警仍未 上报,单击历史越门限告警对话框中的<停止等待>按钮,暂停本 次查询操作。

● 在选择告警时,单击进行单选;按住<Shift>或<Ctrl>键,再单 击进行多选。再次单击将取消对该对象的选择。

在当前告警对话框的[确认]列中,红色图标表示紧急告警,橙
 色图标表示主要告警,黄色图标表示次要告警,紫色图标表示警告告警。

 ●选择一条上报的告警,在下方的显示框中将提示告警原因或解 决方法。

5.3.5.4 界面说明

1.41	 Tenes 2 11 and	1 100 0000	 NUME DATE	110
	 			_
				-9

图 5-21 历史越门限告警对话框

(1) 请选择网元:显示当前所选的网元,并可在下拉列表框中选择客户端操作窗口中选择的其他网元。

(2) <查询设置>按钮:用于设置历史越门限告警的查询条件。单击<查询设置>按钮,弹出告警查询设置对话框,包括[常规]和[高级]2个页面。

● [常规]页面

告答查询说案 发现 直线	
松崎昭和 ◆ 全部法算 ドロ[0-1-20] ドロ[0-1-20] ドロ[0-1-20] ドロ[0-1-50] の形の2[0-1-1] OTIV 71[0-1-5] OTIV 70[0-1-6] OTIV 70[0-1-6] OTIV 70[0-1-7] OTIV 70[0-1-7] OTIV 70[0-1-6] VII 70[0-1-6] VIII 70[0-1-6] VIII 70[0-1-6] VII 70[0-1-6] VII 70[0	松磯点 含素原因 ● 全部法理 単校 大規用段的路径时间点会 大規道是的這種中间点会 大通道是的這種中间点会 大通道是的這種中间点会 大通道是的這種中间点会 大通道是的這種中间点会 大通道是的這種中间点会 大通道是的這種中间点会 大通道是的這種中间点会 大通道是的這種中间点会 大通道是的這種中间点会 大通道是的這種中间点会
合整戸重性 12 葉島 12 主要 12 次要 12 数者	时间段 从: 2004 - 4 - 7 - 0 - 0 - 0
	应用 美田

图 5-22 告警查询设置对话框(常规)

[检测板]:列出当前所选网元安装的所有单板。当前所选检测板 反白显示,支持多选,通过符号 • 标识已经选择的检测板。

[检测点]:列出当前所选检测板支持的告警检测点。当前所选检 测点反白显示,支持多选,通过符号 • 标识已经选择的检测点。

[告警原因]:列出当前所选检测点可检测的告警。当前所选告警 反白显示,支持多选,通过符号 ● 标识已经选择的告警。

[告警严重性]:选择待查询告警的严重级别。选择框为空表示不 查询此级别告警;选择框内有符号""表示查询此级别告警。 支持多选。

[时间段]:设置历史告警产生的时间段。

● [高级]页面

·····································		
	合勢只型 戸 通信 戸 近煙葱維	(1995) 11 (1995) (1995) 11 (1905) 11 (1905) 11 (1905) 11 (1905) 11 (1905)
	「戸 环境 晩い信息 - 戸 李被定	ت te
		虚用 关闭

图 5-23 告警查询设置对话框(高级)

[告警类型]:查询告警的类型。

[确认信息]:查询告警的确认情况。

[确认用户]:告警的确认用户。目前暂不支持。

(3) 历史告警显示列表:显示当前所选网元的历史告警信息, 包括[序号]、[确认]、[检测板]、[检测点]、[告警原因]、[来源 板]、[来源端口]、[通道号]、[开始时间]、[结束时间]、[经历 时间]、[性能值]、[确认用户]、[确认时间]、[清除告警用户]、 [告警严重性]和[告警类型信息]。

(4) NCP 全量采集:是否要求 NCP 板上报时间范围之内的全部 历史告警。当[NCP 全量采集]的选择框内有符号""时,每次查 询命令都要求 NCP 板上报所有历史告警;当[NCP 全量采集]的选择 框为空时,NCP 板仅上报新的告警。

(5) 查询备份文件:当选中[查询备份文件]时,激活<备份信息 >按钮。 (6) <备份信息>按钮:输入备份文件所在位置。仅当[查询备份文件]选择框内有符号""时,<备份信息>按钮被激活。单击<
 备份信息>按钮,弹出备份信息对话框,如图 5-24所示。

洲 备份信息	<u> </u>
C:/Program Files/ZTE/ZXONM_E300/db/	backup/dump
☞ 搜索缺省目录	确定 取消

图 5-24 备份信息对话框

对话框中显示备份文件的路径。当[搜索缺省目录]前的圆形按钮 为 💽 状态时,对话框显示缺省目录位置。

5.3.5.5 操作要点

● 注意分析网元间相关联的越门限告警。比如上游 otug 输入存在 b1 性能超值告警,下游 otug 必然会有 b1 性能超值告警。

- 注意区分真实越门限告警和误告。
- 注意发现瞬间出现和频繁发生的越门限告警。
- 注意排除历史上光缆割接或者设备更换出现的相应告警。

5.3.6 历史杂合事件

5.3.6.1 操作目的

前往工程现场巡检,通过查询历史杂合事件可以了解保护倒换、 激光器关断、mcu 重启等异常信息。详细记录各事件情况,并逐 个分析各告警发生原因和是否存在潜在隐患,注意过程中把握网 元之间告警的关联性。 能当时解决的予以解决,不能立即解决的必须给相关维护部门和 人员提出合理、可靠、完善的解决方案和意见。

5.3.6.2 历史杂合事件告警特点

完成对某一历史时间段 DWDM 类型网元事件的查询、确认、打印 操作。

5.3.6.3 查询办法

- (1) 在客户端操作窗口中,选择网元,再单击主菜单中的[告警 历史杂合事件]菜单项
- (2) 查询事件

步骤一 : 在[请选择网元]下拉列表框中选择需要查询的网元 , 或者 默认当前所选网元。

步骤二:在[开始日期]和[结束日期]输入框中输入事件发生的时间 段。

步骤三:单击对话框中的<查询>按钮,网元将上报符合查询条件 的事件并在对话框中显示。

(3) 查询备份文件中的事件

步骤一 : 在[请选择网元]下拉列表框中选择需要查询的网元 , 或者 默认当前所选网元。

步骤二:选中[查询备份文件],激活并单击<备份信息>按钮,弹 出备份信息对话框。

步骤三:如果备份信息保存在缺省目录中,选中[搜索缺省目录], 输入框内显示缺省备份文件路径;如果备份信息位于用户自定义 目录,单击[搜索缺省目录]前的圆形按钮,取消搜索缺省目录,输 入备份文件所在路径。 步骤四:单击<确定>按钮,查找备份文件并返回历史杂合事件对 话框。

步骤五:单击历史杂合事件对话框中的<查询>按钮,显示备份文 件内容。

(4) 确认事件

步骤一:参照(2)所述操作查询历史杂合事件。

步骤二:选择需要确认的事件,所选事件反白显示。

步骤三:单击[确认]列按钮,当按钮内有黑点时,使事件处于确 认状态,单击<确认>按钮,对话框中记录确认用户和确认时间。

(5) 清除事件

步骤一:参照(1)所述操作查询历史杂合事件。

步骤二:在对话框的历史杂合事件显示列表中,选择需要清除的 事件,所选事件反白显示,单击<清除>按钮,删除该事件记录; 单击<全部删除>按钮,清空所有事件记录。

5.3.6.4 界面说明

图 5-25 历史杂合事件对话框

(1) 请选择网元:显示当前所选的 DWDM 类型网元,并可在 下拉列表框中选择客户端操作窗口中选择其他 DWDM 网元。

(2) 开始日期、结束日期:用于设置开始和结束的时间,精确 到秒。

(3) 历史杂合事件显示列表:显示所选的网元以及时间段对应的历史杂合事件信息,包括[序号]、[确认]、[检测板]、[检测点]、[事件类型]、[来源板]、[来源端口]、[通道号]、[开始时间]、[确认用户]、[确认时间]、[确认信息]。

(4) NCP 全量采集:是否要求 NCP 板上报时间范围之内的全部 历史事件。当[NCP 全量采集]的选择框内有符号""时,每次 查询命令都要求 NCP 板上报所有历史事件;当[NCP 全量采集] 的选择框为空时,NCP 板仅上报不同的事件。

(5) 查询备份文件、<备份信息>按钮:当选中[查询备份文件] 时,激活<备份信息>按钮。单击<备份信息>按钮,弹出如图 5-26 所示的备份信息对话框,在对话框中打开备份文件。

¹¹¹ 备价信息		_0×
1		
@ 提案缺省目录	确定	取消

图 5-26 备份信息对话框

5.3.7 当前性能查询

5.3.7.1 操作目的

前往工程现场巡检发现无光、弱光告警,性能越限方面的告警, 需要详细查询当前性能和历史性能,详细分析和记录各性能信息, 确认各告警发生原因和是否存在潜在隐患,注意过程中把握网元 之间告警的关联性。

能当时解决的予以解决,不能立即解决的必须给相关维护部门和 人员提出合理、可靠、完善的解决方案和意见。

5.3.7.2 当前性能特点

通过采集网元的性能数据并进行统计处理,显示、保存网元当前 的性能状态。网元当前性能的采集周期包括15分钟数字量性能、 24小时数字量性能、15分钟模拟量性能、24小时模拟量性能、15 分钟性能和24小时性能。

5.3.7.3 查询办法

(1) 在客户端操作窗口中,选择网元,再单击主菜单中的[性能 当前性能]菜单项。

(2) 在客户端操作窗口的导航树或拓扑图中,选择网元,右击 弹出右键菜单,选择[当前性能]菜单项。

(3) 在客户端操作窗口中,选择网元,再单击工具条中的

(4) 查询性能

步骤一:在 [请选择网元]下拉列表框中选择需要查询当前性能的 网元,或者默认当前所选网元。

步骤二:单击<查询设置>按钮,弹出性能查询设置对话框。

步骤三:在[检测板]、[检测点]和[性能项]列表中选择查询单板、 性能检测点和性能项。

步骤四:在[粒度周期]下拉列表框中选择性能周期。

步骤五:单击<应用>按钮,保存设置命令,退出性能查询设置对 话框并返回当前性能对话框。

步骤六:单击<查询>按钮,向网元下发查询命令,在网元在线且 与网管正常通信的情况下,如果有符合查询条件的性能值上报, 将在性能显示列表框中显示。

(5) 保存性能结果

步骤一:参照(4)所述查询性能。

步骤二:单击<保存>按钮,弹出保存为对话框。

步骤三:在目录列表中,选择文件存储路径,最终的存储路径将 在[文件列表]和[保存为]中显示。

步骤四:如果需要将当前性能的查询结果保存在已经存在的文件 中,在文件信息中双击选择需要覆盖的文件;如果需要将结果保 存在新建文件中,在[保存为]中输入新文件的名称。

步骤五:单击<应用>按钮,保存文件并返回当前性能对话框。

(6) 其他说明

● 查询当前性能前,必须在性能查询设置对话框的[检测板]列表
 中选择一块检测单板。

● 如果性能数量超过对话框的单页显示范围,可通过
 ▲
 ▲
 ▲
 ▲
 ▲
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 <l

5.3.7.4 界面说明

图 5-27 当前性能对话框

4. 界面说明

(1) 请选择网元:显示当前所选的网元,并可在下拉列表框中选择客户端操作窗口中选择的其他网元。

(2)性能显示列表:显示当前所选网元上报的性能情况,包括[检测板]、[检测点]、[性能项]、[性能值]、[来源板]、[来源端口]、[通道号]、[已逝时间]。

(3) <查询设置>按钮:用于设置性能的查询条件。单击后,弹 出性能查询设置对话框,如图 5-28所示。

32] 性能态确设置 发现 A111		
松海峡	松満点 全部法評 ● 回惑 ※ 回道理的部径時間点白 火道法理的部径時間点白 火速入型的這種時間点白 火速入型的這種時間点白 火速入型的這種時間点白 火速入型的這種時間点白 火速入型的這種時間点白	世能项
総度周期 15分钟模级量性能 ⊻	新規税 从: 1900 - 1 - 1 別: 3000 - 1 - 1	· ○ ○ ○ · · · · · · · · · · · · · · · ·
		虚用 美紀

图 5-28 性能查询设置对话框

[检测板]:列出当前所选网元已安装的所有单板信息,只可单选。 通过符号 ● 标识已经选择的检测板。

[检测点]:列出当前所选单板的所有性能检测点。当选择"全部选择"时,表示选择所有检测点。通过符号 <>> 标识已经选择的检测点。

[性能项]:列出当前所选单板、检测点下可检测的所有性能项,支持多选。当选择"全部选择"时,表示监测所有性能项。通过符号 ●标识已经选择的性能项。

[粒度周期]:性能事件的采集周期,包括包括15分钟数字量性能、24小时数字量性能、15分钟模拟量性能、24小时模拟量性能、15分钟模拟量性能、24小时模拟量性能、15分钟性能和24小时性能。

[时间段]:性能查询的时间段。仅对历史性能查询有效。

(4) <报表>按钮:保存网元的当前性能事件。单击后,弹出保 存为对话框,如图 5-29所示。

图 5-29 保存当前性能事件

[文件列表]:显示当前所选的路径全称。

目录列表:位于图 4-20 左侧,列出[文件列表]中显示的盘符下的 所有目录以及其他盘符,以便用户选择文件的存储路径。

文件信息:位于图 4-20 右侧,列出[文件列表]中显示的路径下的 所有文件。

[保存为]:显示文件存储路径,并可输入存储的文件名称。

5.3.7.5 操作要点

● 注意分析网元间相关联的性能。比如上游 otug 输入存在 b1 性能,下游 otug 必然会有 b1 性能。

- 注意发现瞬间出现和频繁发生的性能值。
- 注意通道功率性能在复用段内的平坦度和各检测点的达标值。

- 24 小时性能包含了 15 分钟性能情况,先查询 24 小时性能情况,如果存在误码性能积累,再分解进行 15 分钟性能查询。
- 注意排除历史上光缆割接或者设备更换出现的相应告警。

5.3.8 历史性能查询

5.3.8.1 操作目的

工程巡检最主要的目前就是发现网络运行中潜在的问题和隐患, 因此前往工程现场巡检发现无光、弱光告警,性能越限方面的告 警,需要详细查询历史性能,至少必须查询各网元 <u>3 个月</u>历史性 能情况,详细分析和记录各性能信息,确认各告警发生原因和是 否存在潜在隐患,注意过程中把握网元之间告警的关联性。

能当时解决的予以解决,不能立即解决的必须给相关维护部门和 人员提出合理、可靠、完善的解决方案和意见。

5.3.8.2 历史性能特点

查询、保存网元某个时间段的性能记录。网元历史性能的采集周 期包括 15 分钟数字量性能、24 小时数字量性能、15 分钟模拟量 性能、24 小时模拟量性能、15 分钟性能和 24 小时性能。

5.3.8.3 查询办法

- (1) 在客户端操作窗口中,选择网元,再单击主菜单中的[告警 历史性能]菜单项。
- (2) 查询历史性能

步骤一 :在[请选择网元]下拉列表框中选择需要查询历史性能的网 元,或者默认当前所选网元。 步骤二:如果默认查询全部网元的所有性能事件,直接进入步骤 七;如果需要设置查询条件,单击<查询设置>按钮,弹出性能查 询设置对话框。

步骤三:在[检测板]、[检测点]和[性能项]列表中单击选择查询单 板、检测点和性能项。

步骤四:在[粒度周期]下拉列表框中选择性能周期。

步骤五:在[时间段]输入框中输入起始、终止时间。

步骤六:单击<应用>按钮,保存设置命令,单击<关闭>按钮,退 出性能查询设置对话框并返回历史性能对话框。

步骤七:单击历史性能对话框中的<查询>按钮,向网元下发查询 命令,在网元在线且与网管正常通信的情况下,如果有符合查询 条件的性能值上报,将在性能显示列表框中显示。

(3) 查询备份文件中的性能

步骤一:在 [请选择网元]下拉列表框中选择需要查询历史性能的 网元 , 或者默认当前所选网元。

步骤二:选中[查询备份文件],激活并单击<备份信息>按钮,弹出 备份信息对话框。

步骤三:如果备份信息保存在缺省目录中,选中[搜索缺省目录], 输入框内显示缺省备份文件路径;如果备份信息位于用户自定义 目录,单击[搜索缺省目录]前的圆形按钮,取消搜索缺省目录,输 入备份文件所在路径。

步骤四:单击<确定>按钮,查找备份文件并返回历史性能对话框。 步骤五:单击历史告警对话框中的<查询>按钮,显示备份文件内 容。

(4) 保存历史性能结果

步骤一:参照(1)所述查询历史性能。

步骤二:单击<报表>按钮,弹出如保存为对话框。

步骤三:在目录列表中,选择文件存储路径,最终的存储路径将 在[文件列表]和[保存为]中显示。

步骤四:如果需要将当前性能的查询结果保存在已经存在的文件 中,在文件信息中双击选择需要覆盖的文件;如果需要将结果保 存在新建文件中,在[保存为]中输入新文件的名称。

步骤五:单击<应用>按钮,保存文件并返回历史性能对话框。

(5) 清除性能记录

步骤一:参照(1)所述查询历史性能。

步骤二:在历史性能对话框中,单击<清除>按钮,清空历史性能 记录。

(6) 其他说明

 ● 在网元上报历史性能数据时,如果在一段时间之内,性能仍未 上报,单击 <停止等待>按钮,取消本次查询操作。

● 如果性能数量超过对话框的单页显示范围,可通过
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 ▲
 <l

5.3.8.4 界面说明

图 5-30 历史性能对话框

(1) 请选择网元:显示当前所选的 DWDM 类型网元,并可在 下拉列表框中选择客户端操作窗口中选择的其他网元。

(2) 性能显示列表框:显示当前所选网元上报的性能情况,包括[检测板]、[检测点]、[性能项]、[性能值]、[来源板]、[来源端口]、 [通道号]、[结束时间]。

(3) 查询备份文件、<备份信息>按钮:当选中[查询备份文件] 时,激活<备份信息>按钮。单击<备份信息>按钮,弹出备份信息 对话框,在对话框中打开备份文件。

(4) <查询设置>按钮:用于设置历史性能的查询条件。单击< 查询设置>按钮,弹出性能查询设置对话框,如图 5-31所示。

●性能互併設置 常規		
私御授	乾減点 ◆ 法常法罪 大振入足的运报将调点会 关张入足的运报将调点会 单数 大振运型的路径终调点会 光质适型的路径终调点会 光线路的空路径终调点会 光线路的空路径终调点会 ◆ 《编·很光路: 《编·很光路:	甘葉原 ● 全原志祥 重大晴入元功率(da) 重大晴入元功率(da) 市力晴入元功率(da) 常太清時(个) (読知を(db) の 市面期間(db) (db)
检发用期	HRR	
15分钟模拟量性能 💌	M = 2003 - 7 - 30 B1 = 2003 - 7 - 30	- 0 0 0 0 1 - 11 21 50 1
		二 总用时间
		<u>定用</u> 关闭

图 5-31 性能查询设置对话框

[检测板]:列出当前所选网元已安装的所有单板信息 , 支持多选。 当选择 " 全部选择 " 时 , 表示选择所有单板。通过符号 🄍 标识 已经选择的检测板。

[检测点]:列出当前所选单板的所有性能检测点,支持多选。当选择"全部选择"时,表示选择所有检测点。通过符号 标识已经选择的检测点。。

[性能项]:列出当前所选单板、检测点下可检测的所有性能项,支持多选。当选择"全部选择"时,表示监测所有性能项。通过符号 ●标识已经选择的性能项。

[粒度周期]:性能事件的采集周期,包括15分钟数字量性能、24 小时数字量性能、15分钟模拟量性能、24小时模拟量性能。

[时间段]:性能查询的时间段。

(4) <报表>按钮:保存 DWDM 类型网元的历史性能事件。单击后,弹出保存为对话框,在对话框中设置性能的存储路径和文件名称。

5.3.8.5 操作要点

● 注意分析网元间相关联的性能。比如上游 otug 输入存在 b1 性能,下游 otug 必然会有 b1 性能。

- 注意发现瞬间出现和频繁发生的性能值。
- 注意通道功率性能在复用段内的平坦度和各检测点的达标值。
- 24 小时性能包含了 15 分钟性能情况,先查询 24 小时性能情况,如果存在误码性能积累,再分解进行 15 分钟性能查询。
- 注意排除历史上光缆割接或者设备更换出现的相应告警。

5.3.9 功能性测试

5.3.9.1 保护倒换测试

操作目的

验证网络倒换功能是否正常。保证网络环保护的可用性和可靠性。

测试方法

首先必须得到用户同意,批准保护倒换测试时间。

在客户端操作窗口中,选择网元,再单击主菜单中的[维护 诊断 保护组外部命令设置]菜单项。选择"环强制倒换"、"环人工 倒换"进行保护倒换测试。

🚏 保护组外部命令设置	
请选择积元	×
(保护紙 命令道 () 油酸命令 () 环工作価道規定 () 所有期段保护地定 () 环発射保険 () 环人工解决 () 环点因 () 示方向 () 以方向 () 以方向	■ 保护位案性 保护/型
	三用 美術

图 5-32 保护倒换测试窗口

操作要点

● 必须先查询各站 aps-id 是否混乱,如果混乱不能进行保护倒换操作。

● 必须观测各站 aps 启动状态,如果某个站点 aps 处于停止状态, 不能进行保护倒换操作。

● 必须先进行环演习倒换确认 aps 和 k 字节协议正常才进行保护 倒换测试。

● 保护倒换异常应先保证业务恢复再进行故障定位。

有条件可以补充进行逐站断纤倒换测试,确认倒换可靠性和稳
 健性。方法如下:

通过拔纤或在网管上关断 OBA 的激光器的方法,一段一段的制造故障,要求每一倒换和恢复网管上查到的倒换状态均正常,所 在节点上可以看到的 OPCS 的 STA 灯均正常,倒换以后观察一段 时间,如果挂表表上不能出现误码,倒换时间不能超标。关于倒 换,可以通过 OPCS 的 STA 灯的颜色来判断,有四种状态:1、 如果是 A 向倒换,OPCS 状态灯亮红灯;2、如果是 B 向倒换, OPCS 亮绿灯;3、不倒换时 OPCS 亮橙灯;4、直通状态时 OPCS 黑灯。

对于 OPCS 板,我们要清楚它也是根据"并发选收"的。所谓"并 发"是指信号从一个方向上路如 AADD,然后通过一个1:2的耦 合器分成两个方向发出去即 AWO 和 BPO 发出去;所谓"选收" 是指根据 APS 协议决定例如 ADROP 光开关是桥接到到 AWI 或 BPI 上;或者是 BPI 与 APO 直接桥接直通。

当断了一个跨段以后,观察经过这个跨段的保护组的业务在哪两 个节点上下,这两个节点的这一对业务所经的 OPCS 一个是 A 向 倒换而另一个是 B 向倒换;当这个保护组如果还有不经过这个跨 段的业务板,那这些点的这个保护组的 OPCS 应该是直通状态。 当一个保护组在中断的跨段上没有业务,那么保护组将不会倒换。

如果业务不能正常倒换,首先检查是不是环路上还有别的地方有 故障,再重新下发一次各点的保护组;还不行的话就要检查一下 保护组是不是配置有误,如果配置有问题,就要重新配保护组。 如果系统可以正常倒换,但倒换后业务不通,首先分析倒换后业 务的走向,然后通过网管一级一级的查询问题出在何处,观察是 否有业务板倒换前后输入光功率变化过大,问题一般都是因为保 护通道连纤错误或者连纤不紧等原因造成的。

5.3.9.2 业务接口测试

操作目的

确认业务承载可靠性和稳定性。

测试方法

这里的测试需要在用户业务层网管上进行。因此用户业务层网管 必须支持在线监测功能。本测试主要针对非 sdh 业务的承载,如 果 fc/fddi/ficon/escon/ip/以太网等业务。

操作要点

要求观察时间不少于24小时。

5.3.9.3 透明用户数据通道测试

操作目的

验证透明用户数据通道可用性和可靠性。

测试方法

测试采用在线检测的方式。如果用户允许的前提下,可以中断用 户监控业务进行短期的不带业务测试。

在线测试需要在用户业务层网管上进行。用户环境监控系统网管 一般支持在线检测。

操作要点

 不带业务测试建议采用超级终端传送 5MB 以上大文件观察重 传次数的方法进行测试,要求重传次数连续不超过 5次,全部传 送完毕重传次数不超过 10次。

- 在线测试要求观察时间不少于 24 小时。
- 不带业务测试要求观察时间不少于2小时。

5.3.9.4 公务拨打测试

操作目的

验证公务系统可用性和可靠性。

测试方法

本站拨打环网 3 个以上站点、链网 2 个以上站点,通话时间每次 不少于 15 分钟。

其他站点 2 个以上和本站进行 5 次以上短期拨打和通话,每次通话 2 分钟。

其他站点 2 个以上站点同时拨打本站, 2 个听到震铃声, 1 个听到 忙音。

本站接听其他站点拨打的电话,通话时间每次不少于 15 分钟,接 听 2 次以上。

操作要点

- 无公务单板复位现象。
- 无接听时出现忙音现象。
- 无通话中异常中断现象。
- 通话音质正常无异常杂音。

5.3.9.5 M800 保护维护

M800 系统应用了多种保护方式,因此在工程维护中增加了有关保护方面的注意事项。

对于 2M 监控系统的两纤双向通道共享(0PCS)保护倒换不支持通 道触发的倒换,只能针对线路 LOS 进行保护,也即 0PA 输入无光 告警触发保护倒换。这样就存在当线路衰减变大,对业务已经造 成影响了,但是由于还没有低于 0PA 的无光倒换门限,因而造成 不能倒换的弊端。 举例来说:M800 系统的下路光功率一般调到 - 6dBm ± 1dB,如果接 收端业务类单板是 PIN 管接收,那么在接收端口就不需要加衰减 器,如果是 APD 管接收,我们一般在接收端口加 10dB 衰减器,这 样进入到 APD 接收机的光功率就为-16dBm 左右。如果线路衰减增 大了 5~10dB,则由于通道层的光功率劣化就会对业务造成影响, 但是此时有可能复用段 OPA 的入光还没有降低至它的无光倒换门 限,因此也就不能对业务进行保护,最终导致业务受损。

因此在日常维护中需要定期检查 MPI-S 和 MPI-R 点光功率,同初 期光功率记录进行比较,对线路定期检查。一定要随时注意网管 上 OPA 的告警,一旦 OPA 产生了弱光告警,就应该马上处理了, 因为这时有可能影响到业务但还不能倒换。

那么怎么计算 OPA 的无光倒换门限呢?方法如下,以某工程(A, B 两节点)型号为 32/17 的 OPA 为例计算它的无光倒换门限。

17dBm(最大输出总功率)-15(32波)=2dBm(单波最大输出功率)

2dBm(单波最大输出功率)-32dBm(增益) = -30dBm(单波最大 输入光功率)

-30dBm(单波最大输入光功率)-6=-36dBm(就是网管上 OPA 输入弱光告警门限)。

-30dBm(单波最大输入光功率)-9=-39dBm(就是网管上 OPA 输入无光告警门限,也就是 OPA 保护倒换门限,当 OPA 的输入光功率低于-39dBm 时就倒换了)

在实际应用中,A 能收到 B 传过来的 8 波,因此,单波输入光功率 为-36dBm 时,总输入光功率=-36dBm+101og8=-27dBm。平时应该经 常注意在网管监测 OPA 的入光功率,如果此处总功率降到-27dBm 了,那就要及时处理。 保护网管数据需要定期检查及维护,包括系统关键点光功率值, 一旦发生异常,要及时检修。

如果维修线路,需要网管上首先进行强制倒换,之后再进行断纤 等处理。

关于 OSC 单板的维护,根据工程维护需要,可以复位已有的 OSC 单板,不会影响系统当前的保护状态。但是需要慎重考虑更换 OSC 单板的操作,主要原因是 OSC 单板自身保存了的 APS 状态(例如 APS ID),一旦更换单板可能引发错误的动作。如果必须要更换 OSC 单板则分两种情况分别处理。

● 一种情况是在更换 OSC 单板时,全网系统处无保护倒换的正常 状态,此时可以更换 OSC 单板,但必须保证新的 OSC 单板中没有 任何保护组数据,更换完成后网管会对其进行自动上电配置保护 组数据。

如果无法确认更换单板的 APS 状态,需要先通过 IST 口清除历史 状态(docmd 0991 ef 命令),然后清空可能残留的保护组信息 (docmd 0991 e5 命令),然后即可更换单板。(这步只有中兴通 讯技术支持工程师才可使用)

● 第二种情况时如果一定要更换已经处于倒换状态下的 OSC 单 板,那么应当遵循如下步骤:

首先通过网管将需要更换 OSC 单板的节点的 APS 设置成"非使能" 状态;

在保证新单板无别的保护组数据的前提下,替换需要更换的单板 后保证能够正常被网管配置成功(通过单板配置指示灯观察确 定),这样网管将会下发上电配置信息,使得新单板获得相关的 保护数据; 通过网管下发强制保护倒换命令,使当前节点 APS 状态同更换前 一样(注意此时由于处于"非使能"状态,不会立即导致动作); 通过网管将 APS 使能设置为"使能"状态,即可。

M800 系统上的 OA 板的 MON 口,监测的是 OA 的输出光功率,一般 来说比 OA 的输出光功率低 23dB,例如如果从一块 OA 板的 MON 口 量到的光功率是-10dBm,那么我们可以粗略推算此 OA 的输出光功 率是 13dBm。另外,由于 MON 口监测的是 OA 的输出光功率,所以 从此口测得的信噪比是此 OA 的输出光信噪比,要注意标准上 MPI-R 点光信噪比是指的 OPA 的输入光的光信噪比

对于通过 OP 板保护的业务:

由于 OP 板是采用并发选收的方式来对业务进行保护的,在环形光 传输系统上,用于两节点之间业务的保护其原理图图 5-33如下:

图 5-33 两节点业务保护原理

首先调试时在网管上将此节点的 OP 板在"线性保护使能"里将使 能功能禁止,这样在默认状态, OP 板是工作在线路1状态。也就 是并发 TOUT1、TOUT2, 收 RIN1。即业务是 TOUT1 和 RIN1 上。如果 调好了下路 RIN1 和 RIN2,以及上路 TOUT1、TOUT2 就可以将 OP 板的线性保护使能状态打开。

其次维护时,应首先查看 OP 板的告警状态,看哪一路输入无光告 警。根据业务走向判断故障的来源点。特别注意的是若此业务中 配置有 OTUG 中继板时,在线性保护使能中也要对中继板的保护使 能打开,否则保护倒换会有问题。

附录A 单板功能和主要指标

A.1 单板功能

A.1.1 NCP 板

NCP 完成网元的初始配置,在运行过程中对外提供 F 和 Q3 等接 口,接收网管的命令,加以分析,对各个单板发布指令,执行相 应操作;同时将各个单板的上报消息转发网管。NCP 还控制设备 的告警输出和监测外部告警输入。完成网管和单板信息传递的功 能。

A.1.2 OTU 单板

将不满足 G.692 标准要求的光信号转换至满足 G.692 标准要求的 光信号。(包括波长、功率、色散容纳值等)

波长转换。

可完成 B1、J0 的检测功能。

A.1.3 OMU 单板

将不同波长的光信号合路到一根光纤中传送。

系统采用的合波器类型有耦合器型和介质膜滤波型。

A.1.4 ODU 单板

将不同波长的光信号从一根光纤中分离下来。

分波器的类型为介质膜滤波器型、AWG 型。

A.1.5 OAD 单板

功能:

实现 16,8,4 路固定波长的光分插复用功能。

完成固定波长上下功能;

保证不上下波长在单板上直通。

OAD 的类型为干涉滤波型。

为无大量业务上下的节点提供了一种高性价比的解决方案

A.1.6 OA 单板

完成输入光功率的功率提升,具有放大功能。

根据在系统中位置的不同分为 OBA/OPA 和 OLA。

OBA 是系统功率放大器。

OPA 是系统前置放大器。

OLA 是线路放大器。

A.1.7 OSC 单板

实现光监控信号、公务、网络监控信息及用户通道的接收及发送。

A.1.8 OW 单板

实现站间公务呼叫和互通功能。

A.1.9 OPM 单板

完成双路光通道的波长,功率,信噪比实时监测;

功率测量的精度为±1.0dBm;

中心波长测量的精度为±0.1nm;

光信噪比测量的精度为±1.0dB;

A.1.10 OGMD 单板

OGMD 板的主要功能是利用红蓝带滤波器对一组波长进行复用和 解复用。

A.1.11 OP 单板

OP 单板根据系统配置不同,可用于光复用段的线路 1+1 保护和光 通道层的 1+1 保护功能。在用于光复用段保护时,它位于光终端 机的光功率放大之前及光预放之后;在用于光通道层保护时,它 位于光终端机的发送端光转发板之前及接收端光转发板之后。

A.1.12 OPCS 单板

OPCS 板是 ZXMP M800 城域波分设备中实现通道共享保护的功能 板,主要实现通道故障检测和在线路出现故障时光通道的光路倒 换功能。

A.1.13 OPMS 单板

OPMS 主要实现光复用段共享保护的倒换功能。当接收到 OSC 的 APS 控制器的倒换命令后,执行相应的倒换。

A.1.14 SRM 单板

子速率汇聚板用于完成低速率业务信号到高速率线路信号的复接/ 分接,进行复接后的信号速率与波分系统的通道速率相同,可以 提高系统兼容性和通道利用率,在信号复接/分接过程中,可以实 现信号性能监测和开销透传,满足 DWDM 应用和城域网应用要 求。对于此类有主从时钟设置的单板,例如 SRM41,将从支路提 取时钟的单板设为主板,时钟设为支路1,将从群路提取时钟的单 板设为从板,时钟设为群路

A.1.15 GEM 单板

GEM2 单板将 SDH 设备送来的符合 IEEE802.3Z 标准 GE 信号 通过 O/E/O 转换,汇聚成符合 G.692 规范的具有特定波长的光信号

A.2 单板正常工作时的功率标称值和工作范围

A.2.1 OTU 单板

对于接收机: APD 标称值 -15dBm, PIN 标称值 -5 dBm

对于发射机: EA 标称值 -3dBm, DM 标称值 0 dBm (参考用)

	性能门限 1	性能门限 2	性能门限 3	性能门限 4
激光器偏流门	偏流过大门限			
限(0x0101)	100mA			
激光器输出功	无光门限	弱光门限		
率门限	-12dBm	-6dBm		
(0x0102)				
激光器管芯温	温度上限	温度下限		
度门限	27	23		
(0x0103)				
制冷器电流门	制冷电流上限	制冷电流下限		
限(0x0104)	1.2A	1.2A		
接收机输入功	无光门限	弱光门限	光功率过强	
率门限	-21dBm(发送端	-18dBm(发送	门限	
(0x0105)	OTU)	端 OTU)	OdBm(发送	
	-31dBm(接收、	-28dBm(接收/	端 OTU)	
	中继端 0TU)	中继端 OTU	-9dBm(接	

ZTE中兴

		收、中继端 OTU	
B1 误码性能门 限(0x0106)	B1 误码过限门 限 (4字节,性 能门限 1 为低2 字节,性能门限 4 为高2字节): 10000		性能门限 4 为高 2 字节 , 这样做可以 和原来的兼 容

A.2.2 OMU 单板

告警类型	告警源	告警门限
无告警		>-25dBm
弱光告警		-25 ~ -28dBm
无光告警		<-28dBm

A.2.3 ODU 单板

告警类型	告警源	告警门限
无告警		>-10dBm
弱光告警		-10~-13dBm
无光告警		<-13dBm

A.2.4 OAD 单板

告警类型	告警源	告警门限
无告警		> -11.85dBm

弱光告警	-11.85~-17.85dBm
无光告警	< -17.85dBm

A.2.5 OA 单板 (OBA/OPA/OLA)

名	称/类型/单板	上限(门限、采集值)	下限
	泵温	30	20
	制冷电流	1.35A	-1.35A
980	Dnm 单/双泵浦		
	0A/0A17		
	制冷电流	1.5A	-1.5A
1480)nm+980nm 泵浦		
C	BA20/0LA20		
	f 光电流监测	10mA	
输入光 功率	0BAR2520	-23dBm	-29 dBm
	0BAR1620	-14dBm	-20 dBm
	0LAR2220	-20dBm	-26 dBm
	0LAR2720	-25dBm	-31 dBm
	0LAR3220	-30dBm	-36 dBm
	0PAR1712	-23dBm	-29 dBm
	0PAR2212	-28dBm	-34 dBm
	0PAR2712	-33 dBm	-39 dBm
输出光	OPA	-6 dBm	-12 dBm
功率	OBA/OLA	2 dBm	-4 dBm

附录B 功率均衡

B.1 功率均衡目标

保证 MPI-R 和 MPI-S 点的通道平坦度。

保证 MPI-S'点上路功率和直通功率的平坦度。

保证 R 点光功率在最佳指标范围,保证最大的通道功率富余度。 保证系统在 R 点的信噪比。

DWDM 原理图

B.2 功率均衡的四个控制点

OTU 输出,输入调整光到 OTU, OTU 输出光功率在-3 dBm。

OPA 的单波输出功率,一般按下面公式控制:OPA 标称最大输出 功率 - 10lg32。比如 OPA2217,其单波输出功率控制在(17 - 10lg32)=+2dBm。

OBA 输出(上光线路的入口)单波长功率,一般按下面公式控制: OBA 标称最大输出功率 - 10lg32。比如 OBA2520,其单波输出功 率控制在(20-10lg32)=+5dBm。

OTU 输入光功率:根据 OTU 接收模块类型确定,长距 APD 接收 模块入光范围在 - 10dBm ~ - 20dBm 之间为佳,选择输入为 -14dBm 左右。短距 PIN 接收模块入光范围在 - 5dBm ~ - 12dBm 之间为佳,选择输入为 - 7dBm 左右。

在 M800 环网中,为了保证全网光功率平衡,一般我们控制 OMU 单波输入光功率控制在 - 6dBm 左右,ODU 的单波输出光功率控 制在-6dBm 左右。

B.3 关键节点功率控制

B.3.1 SDH 和 OTU 连接点的功率控制

B.3.1.1 功率说明

OTU 输入光功率:根据 OTU 接收模块类型,确定连接调制光源 的输出光功率(长距 APD 接收模块入光范围在 - 10dBm~ -20dBm 之间为佳,选择输入为 - 14dBm 左右。短距 PIN 接收模块 入光范围在 - 5dBm~ - 12dBm 之间为佳,选择输入为 - 7dBm 左 右。

B.3.1.2 衰耗配置举例

一般选择 SDH 输出光源作为 OTU 的调制光源。必须根据 SDH 输 出光功率决定是否在 SDH 发和 OTU 输入光口间配置衰耗器,配 置多大的衰耗器。根据实际测试 SDH 输出光功率 X,OTU 接收模 块类型确定的输入光口光功率 Y,确定配置的光衰耗器大小。

实际测试 SDH 输出光功率是 - 3dBm,OTU 接收模块是 APD 的, 要求 OTU 输入口光功率为 - 14dBm,于是必须在 SDH 输出光口 和 OTU 输入光口间配置 - 3 - (- 14)=11dB 的光衰耗,根据手 边的衰耗器进行组合,如果有 11dB 的光衰耗器,可直接使用。对 于 M800 来说,对于 OUT 板来说,一般是 IN1 是短距 PIN 接收模 块,IN2 是长距 APD 接收模块。因此我们应在 IN1 口加 5dBm 的 光衰耗器,在 IN2 口应加 10 dBm 的光衰耗器。

B.3.1.3 注意事项

进行光通道功率控制调整时,尽量减少光衰耗器的使用,能够一 个光衰耗器(如10dB)完成的不能使用两只光衰耗器(如5dB) 完成。因为增加一个光衰耗器就增多一级光反射,光反射对光传 输性能影响非常大,是不良因素。衰耗器连接不能直接在光口上 级连,如果需要加两只衰耗器,必须在本单板 OUT 测加一只,在 对端单板的 IN 口加另外一只。

B.3.2 OTU 输出光功率控制

B.3.2.1 参数说明

输出光功率:没有调制光输入 OTU 时,OTU 输出光功率是不稳 定的,从 0~ - 10dBm;有调制光输入 OTU 时,根据 OTU 发送 模块类型,确定 OTU 的输出光功率(对于 EA 模块 OTU 输出光 功率是 - 3 ± 0.5dBm 左右,对于短距离 OTU 输出光功率是 0 ± 0.5dBm)。

调试中必须使用调制光加载到 OTU 的 IN1 口。

B.3.3 OMU 光功率控制

B.3.3.1 参数说明:

输入光功率:就是 OTU 输出光功率。

对于 OMU 必须测试单波长输入时的输入光功率、输出光功率,并 计算出单波长在 OMU 上的插损。对于开局使用的波长,必须保证 插损一致性,差值控制在 3dB 范围内。插损以实际测试并计算的 结果为准或者以出厂记录为准。

举例:如果测试两个波长插损差值为 6dB,检查是否砝兰污糟, 如果是 OMU 导致,该 OMU 器件不合格,需要更换 OMU。
B.3.3.2 衰耗配置:

OTU和OMU间根据OMU的入光功率为-6确定是否需要加衰减器。

B.3.4 OBA 光功率控制

B.3.4.1 参数说明:

对于 OBA 必须测试输入光功率、输出光功率,并计算出总功率增益。检查单板内部贴纸上对输出功率和增益的标识,和实际测试 值的差异。OBA 输出(上光线路的入口)单波长功率,一般按下 面公式控制:OBA 标称最大输出功率 - 10lg32。比如 OBA2520, 其单波输出功率控制在(20 - 10lg32) =+5dBm。原则上允许有+/ - 2dB 的偏差。

B.3.4.2 衰耗配置举例:

OBA 和 OMU 间根据情况决定是否配置衰减器。

举例:

OMU 为耦合器类型的,插损约 16dB,一般不需要加衰减器,

OMU 为介质膜滤波片型或 AWG 型,插损一般假定为 6dB;

如配备 OBA C1720,则要加一个 3dB 的衰减器,

如果错误配成 OBAC2520,则要加一个 10dB 的衰减器。

B.3.4.3 注意事项:

OBA C2520 表示长距通路增益 25dB ,最大输出光功率为+20dBm。

ZTE中兴

B.3.5 OLA 光功率控制

B.3.5.1 参数说明:

对于 OLA 必须测试输入光功率、输出光功率,并计算出总功率增益。检查单板内部贴纸上对输出功率和增益的标识,和实际测试 值的差异。OLA 输出(上光线路的入口)单波长功率,一般按下 面公式控制:OLA 标称最大输出功率 - 10lg32。比如 OLA2520, 其单波输出功率控制在(20 - 10lg32) =+5dBm。

B.3.5.2 衰耗配置举例:

根据具体线路损耗和相邻站点 OA 的类型计算后再进行适当配置。

如 A、B 两个站点(OLA 站点)间线路距离 80km,G.652 光纤损 耗可按 0.25dB/km 计算,如工程勘测有了实测值,则按实测值计 算。

A 站点每通路出光都按照 5dBm 计算,若 B 站点同一方向配置的为 OLA27(OLA22),则其每通路标准输入光功率应为-22dB(-17dB),而线路损耗为 80×0.25=20dB,加上 1dB 的光接头损耗,共 21dB。

则经光纤传输后每通路出纤功率为 5-21=-16dBm。

若配置 OLA27,则配置 5dB 的衰减器即可,控制 OLA 单通路输出为 - 16 - (-22)=6dB (+5dBm 左右),如果配置的是 OLA22,则可以 具体工程施工中不加衰减器。

当然因为具体线路情况可能损耗还要低,因此配置一个 3dB 的衰减 器即可。

B.3.5.3 注意事项:

OLA 配置的原则是均衡前一段的线路衰耗。

OLA27 表示 OLA 通路增益 27dB。

B.3.6 OPA 光功率控制

B.3.6.1 参数说明:

对于 OPA 必须测试输入光功率、输出光功率,并计算出总功率增益。检查单板内部贴纸上对输出功率和增益的标识,和实际测试 值的差异。OPA 输出(上光线路的入口)单波长功率,一般按下 面公式控制:OPA 标称最大输出功率 - 10lg32。比如 OPA2217, 其单波输出功率控制在(17 - 10lg32) =2dBm。

B.3.6.2 衰耗配置举例:

OPA 的输入端,要根据传输过来的出纤功率(OPA 输入光功率)和 OPA 类型来计算后进行配置.

举例:

线路传输过来的单通路出纤功率为 - 8dB,

配置的 16 波 OPA1611(每通路的标准输入是 11 - 12 - 16= -17dBm),就需要配置一个 9dB 的衰减器。 - 8 - (-17)=9dB。

B.3.6.3 注意事项:

OPA 可以适当的输出饱和,但必须控制在标准输入+1dB 范围内。

OPA1611 表示通路增益 16dB,最大输出光功率为+11dBm。

每通路的标准输入计算方法:单波标准输出功率-增益。

一般情况下,在 OPA和 ODU 之间加有衰减器,因为 ODU 入光口 太靠近光纤走线区,因此一定不要在 ODU 入光口加衰减器,而应 在 OPA或 SDMT 的出光口加衰减器,避免光纤过渡弯折或扭曲。

B.3.7 ODU 光功率控制

B.3.7.1 参数说明:

输入光功率:就是 OPA 输出光功率。

对于 ODU 必须测试单波长输入时的输入光功率、输出光功率,并 计算出单波长在 ODU 上的插损。对于开局使用的波长,必须保证 插损一致性,差值控制在 3dB 范围内。插损以实际测试并计算的 结果为准或者以出厂记录为准。

同时还必须在仅有一个波长输入情况下,测试 ODU 相应波长和其他波长输出口的输出光功率,计算出隔离度。

举例:如果测试两个波长插损差值为 6dB,检查是否砝兰污糟, 如果是 ODU 导致,该 ODU 器件不合格,需要更换 ODU。

B.3.7.2 衰耗配置:

OPA 和 ODU 间不需要加衰减器。

若 ODU 输出后配置有 OTUR 单板 则在 OTUR 单板输出口和 SDH 光板输入口之间配置 10dB 的 FC 衰减器。(对于配置 SDH 短距 PIN 模块的光板,采用 5dB 的 FC 型衰减器也可以。)

若 ODU 各通路输出信号直接送至 SDH 光板的接收,应根据 ODU 各通路出光大少及 SDH 光板类型来具体确定所配置的 FC 型衰减 器的大少(长距 APD 接收模块入光范围在 - 10dBm ~ - 20dBm 之 间为佳,短距 PIN 接收模块入光范围在 - 3dBm ~ - 14dBm 之间为 佳。),必须控制 ODU 输出光功率,避免 OPA 增益过高,ODU 输出到 SDH 接收模块的光功率过载或者过高导致接收机损坏。只 是在很多情况下是可以不配置的(如不要求远端接入或不要求 ODU 出光很高,可在 ODU 前加衰减器解决问题)。

B.3.8 OSC 光功率控制

B.3.8.1 参数说明:

对于 OSC 必须测试输入光功率、输出光功率。输入光功率必须大于 - 42dBm。输出光功率控制在 - 3 dBm 左右。

B.3.8.2 衰耗配置:

OPA 和 OSC 之间以及 OBA 和 OSC 之间不需要加衰减器。

B.3.9 OAD 光功率控制

B.3.9.1 参数说明:

OAD 的调试主要集中在波长输出功率均衡的问题上,必须保证上 路光和直通光在 OAD 的 OUT 输出功率均衡。控制 OAD 的 DROP、 ADD 的衰耗均在 3dB,直通在 2dB 左右。注意直通波长的衰耗可 以通过 M1/M2 间连接的衰耗器进行调整。一般 4 波 OAD 上下路 每通路的插损按 3dB 计算(包括光接口损耗),直通波长的插损按 3dB 左右计算。

B.3.9.2 衰耗配置

如对于上路的通路,假设上路 OTU9 发送光功率是 - 3dBm,上路 插损是 3dB,直通波长在 IN 口的功率为 - 3dBm,直通插损为 2dB, 此时上路波长第 9 波在 OUT 口功率为 - 9dBm,直通波长第 10 波 在 OUT 口功率为 - 9dBm。为了保证 9、10 波在 OUT 口功率均衡, 必须在 OTU9 的 OUT 端口加入 3 dB 的衰耗器,保证 9、10 波在 OUT 口功率一致,都为 - 9dBm。衰耗配置如下图所示:

中兴通讯

ZTE CORPORATION

深圳市南山区高新技术产业园科技南路中兴通讯大厦 电话(Tel):86-755-26770000 传真(Fax):86-755-267719999 邮编(Postcode):518057 公司网址:http://www.zte.com.cn 电子邮箱 e-mail:info@mail.zte.com.cn 版次:2004年8月第1版