光收发模块眼图、消光比及灵敏度关系的实验研究

亢俊健1 宁书年1 苏美开2 左 方2 高稚允2

(¹ 中国矿业大学机电与信息工程学院,北京 100083);(² 北京理工大学光电工程系,北京 100081); (³ 石家庄经济学院光电子技术研究所,石家庄 050031)

提要:光接收灵敏度与光发射信号的消光比大小和眼图的上升沿/下降沿陡度具有紧密相关性,试验研究表明,155Mbps 光收发模块消光比在 $16 \sim 20 dB$ 之间时光接收灵敏度最佳;眼图的上升沿/下降沿陡度越陡越好,一般情况下随上升沿/下降沿陡度的变化光接收灵敏度具有 $2 \sim 3 dB$ 的差异。

关键词:光通信,眼图,消光比,光接收灵敏度

Experimental research on the eye - diagram , extinction - ratio and sensitivity of optical receiving - transmitting modules

Kang Junjian^{1,3} Ning Shunian¹ Su Meikai² Zuo Fang² Gao Zhiyun²

(¹School of Mechatronic Engineering & Information ,China University of Mining & Technology ,Beijing 100083)

(²Department of Opto - electronic Engineering ,Beijing Institute of Technology ,Beijing 100081)

(³Opto - electronic Institute ,Shijazhuang University of Economics ,Shijiazhunang 050031)

Abstract: The optical receiver sensitivity is tight relativity with extinction - ratio of optical transmitting signal and ascending/descending gradient of eye - diagram. The experiment shows that the extinction - ratio of 155Mbps optical receiving - transmitting modules is between 16dB and 20dB, the optical receiver sensitivity keeps best. And the more sharp is the ascending/descending gradient of eye - diagram, the more is receiver sensitivity. In general, there are 2 to 3dB errors in optical receiver sensitivity with the change of ascending/descending gradient.

Key words: optical communication, eye - diagram, extinction ratio, optical receiver sensitivity

1 引言*

光收发模块的灵敏度是光接收机性能的综合指标。其定义是:在保证通信质量(限定误码率或信噪比)的前提下,光接收机所需的最小平均接收光功率<mi,通常表示为⁽¹⁾

$$P_r = 10 \lg \left(\frac{\langle p \rangle_{min}}{10^{-3}} \right) (dBm)$$

 $_{min}$ 单位为 W。灵敏度表示光接收机调整到最佳状态时,能接收到微弱光信号的能力。对于灵敏度的测量,根据 ITU - TG. 957 建议 $^{(2)}$ 中 STM - 16 光接口规定的参数,应用代码为 S - 16. 2、L - 16. 2 的最小光发射机消光比 (EX) 要求为 8. 2dB,而最低光接收灵敏度要求分别为 - 28dBm。

评估发射信号的质量,往往采用工程测试常用的"眼图模板"来观察,从眼开度、"眼皮"厚度、交叉点位置、眼图对称性、迹线粗细度、眼图的上升沿/下降沿等状态定性地估计码间干扰、加性噪声、均衡优劣和阻抗匹配等。

值得研究的问题是,究竟采用何种形状的眼图 (如图 1)可使接收机灵敏度最佳?标准眼图应该是什么形状?另外消光比(EX)与灵敏度关系如何?本文实验上研究了海特光电有限责任公司的调制速率为 155MHz、光波波长为 1310nm 光收发模块的眼图、消光比与接收灵敏度的关系;指出了获得最佳灵敏度的眼图形状及消光比(EX)范围。

2 眼图与灵敏度

取光收发模块样品三个,通过调试分别得到以下三种典型眼图,如图1所示:其中眼图一上升沿和下降沿都比较陡峭,眼图二介于眼图一与眼图三之间,而眼图三则与眼图一正好相反,上升沿和下降沿都比较平缓。

实验分两种情况进行,一是自发自收,实验装置如图2,即分别取三个模块,每个模块在示波器上得

^{* 2002}年12月10日收稿

到三种眼图(图 1),测量三种眼图对应的灵敏度,结果如表 1。

二是互发互收,实验装置如图 3,即仍取三个样品,分别得到三种典型眼图(图 1),取其中一个作发送,另两个分别接收,测量结果如表 2。

表 1 155MHz 光收发模块(自发自收)主要参数的测量结果

样品号	眼图1灵敏度 (dBm)	眼图 2 灵敏度 (dBm)	眼图 3 灵敏度 (dBm)
1	- 39.88	- 39.04	- 38.46
2	- 39.32	- 39.01	- 38.11
3	- 37.16	- 36.63	- 35.75

表 2 155MHz 光收发模块(互发互收)主要参数的测量结果

发送	眼图 1(样品 1)		眼图 2(样品 2)		眼图 3(样品 3)	
接收	光功率 (dBm)	灵敏度 (dBm)	光功率 (dBm)	灵敏度 (dBm)	光功率 (dBm)	灵敏度 (dBm)
样品1	- 6.81	- 33.50	- 5.88	- 31.9	- 5.41	- 29.55
样品2	- 6.81	- 36.3	- 5.88	- 36.2	- 5.41	- 34.05
样品 3	- 6.81	- 36.8	- 5.88	- 35.8	- 5.41	- 34.12

3 消光比与灵敏度

影响灵敏度的另一个因素是消光比。通过测量 三个样品得到表 3 所示的结果。

表 3 消光比 EX 与接收灵敏度的关系

消光比	灵敏度(dBm)				
(dB)	样品 1	样品 2	样品3		
8	- 35.5	- 37.6	- 37.0		
10	- 36.1	- 38.0	- 37.5		
13	- 36.7	- 38.5	- 37.7		
16	- 37.0	- 39.1	- 38.4		
18	- 37.1	- 39.3	- 38.5		
20	- 37.1	- 39.3	- 38.5		

4 结论

眼图 1(上冲和下降较标准眼图 2 快)对应的 光接收灵敏度 P₀最高、其次是标准眼图 2P₀、

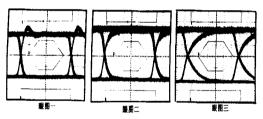


图 1 三种典型眼图

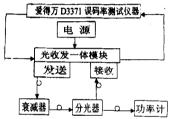


图 2 单模块自发自收测试框图

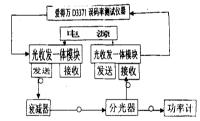


图 3 双模块收发分离测试框图

眼图 $3P_{r3}$,即 $P_{r1} > P_{r2} > P_{r3}$;自发自收时 P_{r1} 比 P_{r2} 大 0.8dBm P_{r1} 比 P_{r3} 大 1.5dBm P_{r3} 比 P_{r3} 比 P_{r3} 大 1.5dBm P_{r4} 比 P_{r3} 大 1.5dBm P_{r4} 比 P_{r3} 大 1.5dBm P_{r4} 比 P_{r5} 1.5dBm P_{r4} 比 P_{r5} 1.5dBm P_{r5}

接收灵敏度受消光比 EX 的限制,在 8 - 16dB 范围内随 EX 增大,灵敏度 Pr 也增大,但在 16 - 20dB 范围内随 EX 增大,Pr 不再增大,基本稳定在一个值。

采用眼图一及 EX 在 16 - 20dB 范围内发送, 得到最佳灵敏度。

参考文献

[1] 黄章勇,光纤通信用光电子器件和组件,北京:北京邮电大学出

版社,2001,7:89-104

- [2] TTU TG. 957. Optical interfaces for equipments and systems relating the synchronous digital hierarchy, 1999, 6
- [3] 邓智芳等,SHD设备光发送机消光比的精确测量,光通信研究,1996.(3)
- [4] Sayyah K et al. Compact 9 to loptoelectronic receiver/switch module. Electron. Lett., 2000, 36(21):1804 - 1806
- [5] Kang ,Saekyoung et al. 155 Mb/s CMOS post amplifier for optical line - terminal receiver in ATM - PON system. SPIE ,2002 ,4906 (8): 224 - 230