振动样品磁强计的原理
如果小样品(可近似为磁偶极子)在原点沿z轴作微小振动,放在附近的小线圈(轴向与z轴平行)将产生感应电压:
eg=Gδcosωt=km,
其中G=π0NA为线圈的几何因74r3VSM的结构子,ω为振动频率,δ为振幅,m为样品的磁矩,N和A为线圈的匝数和面积.原则上,可以通过计算确定出eg和m之间的比例系数k,从而由测量的感应电压得到样品的磁矩.但这种计算很复杂,实际上是通过实验的方法确定比例系数k,即通过测量已知磁矩为m的样品的感应电压eg,得到k=eg,这一过程称为定标.定标过程中标样的m具体参量(磁矩,,体积形状和位置等)越接近待测样品,定标越准确.
VSM测量采用开路方法,磁化的样品表面存在磁荷,表面磁荷在样品内产生退磁场NM(N为退磁因子,与样品的具体形状有关).所以在样品内,总的磁场并不是磁体产生的磁场H,而是H-NM.测量的曲线要进行退磁因子修正,用H-NM来代替H.
样品放置的位置对测量的灵敏度有影响.样品沿着2个线圈的连线的方向(x方向)离开中心位置,感应信号变大;沿其他2个方向(y和z方向)离开中心位置,感应信号变小.中心位置是x方向的极小值及y和z方向的极大值,是感应信号对空间最不敏感的位置,称为鞍点.鞍点附近的小区域称为鞍区.测量时,样品应放置在鞍区内,这样可以使由样品具有有限体积而引起的误差最小.
振动样品磁强计的结构
基本的振动样品磁强计由磁体及电源,振动头及驱动电源,探测线圈,锁相放大器和测量磁场用的霍尔磁强计等几部分组成,如图所示
振动头用来使样品产生微小振动.本仪器采用电磁驱动方式(扬声器结构),这种振动方式结构轻便,容易改变频率和幅值,外控方便.为了避免振动通过电磁铁传递到探测线圈引起干扰,振动头采用双振子结构,一个线圈与样品杆连接,另一个线圈与和振动杆质量相同的铜块连接,2个线圈在磁场中相向振动,相位差为180°为了使.振动稳定,还采取了稳幅措施.在振动杆上固定1块永磁体,永磁体与样品一同振动.当振动幅度发生变化时,放置在永磁体附近的1对探测线圈会探测到这一变化并反馈给驱动电源,驱动电源根据反馈信号对振动幅度作出调整,使振幅稳定.因为振动头是强信号源,且频率与探测信号频率一致,故探头与探测线圈要保持较远距离,用振动杆传递振动,又在振动头上加屏蔽罩,防止产生感应信号.振动频率应尽量避开50Hz及其整数倍,以避免产生干扰.振动头可以在水平面内以任意角度旋转,实现对样品不同方向的测量.
磁体为电磁铁,极面直径为5cm,极间距为3cm,最大磁场可达1.5T.电磁铁电源为直流稳流电源,最大输出电流为10A.磁场的测量采用霍尔磁强计,共分4挡,最大量程为20T,最小分辨率为10-4T,采用核磁共振方法进行校准.
磁矩的测量由探测线圈和锁相放大器组成,1对探测线圈对称地放置在电磁铁的极面上,串连反接,这样可以使由样品振动产生的信号加强,而由磁场的波动引起的以及其他非样品产生的信号相抵消.采用这样的探测线圈可以在中心位置产生鞍区,方便测量.锁相放大器有很高的放大倍数,保证了VSM有较高的灵敏度.采用标准镍球对磁矩进行标定。