阻变存储器的历史
早在 1967 年, Simmons 和 Verderber 就研究了Au/ SiO/ Al 结构的电阻转变行为。由于受实验手段和需求的影响,直到 2000 年,美国休斯顿大学(University of Houston)的 Ignatiev 研究小组报道了PrxCa12xMnO3 ( PCMO) 氧化物薄膜电阻转换特性后,人们才开始投入大量的精力和财力对 RRAM进行研究。报道的具有电阻转变效应的材料种类繁多,到底采用哪种工艺制备的何种材料能够得到实际应用还没有定论;现阶段的研究主要集中在电阻转变机制的探讨和单管性能的提升上。到目前为止,除Spansion公司在 2005 年的 IEDM 上公开发布的 64kb测试芯片外,还没有关于 RRAM 量产的消息,RRAM的集成技术也是其实用化的基础。阻变存储器的结构
图1是RRAM器件典型的“三明治”(MIM)结构示意图,其上下电极之间是能够发生电阻转变的阻变层材料。在外加偏压的作用下,器件的电阻会在高低阻态之间发生转换,从而实现“0”和“1”的存储。与传统浮栅型Flash的电荷存储机制不一样,RRAM是非电荷存储机制,因此可以解决Flash中因隧穿氧化层变薄而造成的电荷泄漏问题,具有更好的可缩小性。
阻变存储器的制备工艺
RRAM 的制备工艺简单 ,有利于保证器件的成品率和降低成本。RRAM 中最关键的是阻变层的制备 ,采用不同工艺制备的器件所获得的性能也不相同。目前 ,阻变层薄膜的制备技术主要有溅射(Sp ut tering) 、 化学气相淀积(CVD) 、 脉冲激光沉积(PLD) 、 电子束蒸发、 原子层淀积(ALD) 、 溶胶2凝胶等。对于不同的材料体系,应根据材料的特性以及反应前驱物的状态,选择不同的制备工艺。同时 ,对材料进行设计和剪裁 ,包括掺杂改性、 引入纳米晶颗粒,以及界面特性改善 (如在 H2 中退火) ,也可以使器件的性能得到提高。阻变存储器阵列的测试
对 RRAM 存储器 ,必须建立一套行之有效的测试方法 ,才能够正确地评估其性能 ,并实现商业应用。RRAM 交叉阵列的操作电压配置一般有两种方法:1/ 2 V 和 1/ 3 V 法 ,如图 4 所示。在 1/ 2V 方法中 ,选中单元的字线电压为 V ,位线电压为 0 ,其余的字线和位线电压都为 1/ 2 V ,这样 ,选中单元上面的电压为 V ,选中单元所在的行和列上其他单元的电压为 1/ 2 V ,其余的单元电压都为 0 ,总的电流为 I (V) + ( m + n - 2) I (V/ 2) 。在 1/ 3 V 方法中 ,选中单元的字线电压为 V DD ,位线电压为 0 ,其余字线电压均为1/ 3 V ,其余的位线电压均为2/ 3 V ,这样 ,选中单元上面的电压为 V ,未选中单元上的电压为 1/3 V 或21/ 3 V ,总的电流为 I(V) + ( m - 1) ( n - 1)I (V/ 3) 。需要指出的是 ,由于器件本身对电压的敏感程度不一样 ,采用 1/ 2 V 或 1/ 3 V 方法对编程效率和读裕度( read margin)会有一定程度的影响。