早期机器人主要表现为简单的操作手,其任务是抓取部件,进行位置变换或工位转移,并完成一些单一的加工处理任务。随着操作手在工业生产过程中数量逐渐增多、任务日益多样,操作手之间开始交互和联结,形成上下游链条关系,并最终实现了工业生产中机器人和机器人构成的流水线。在这一阶段,机器人代替人工作,降低工人的劳动强度及技能要求,并能提高产品的质量及稳定性。
随着空间技术的发展,空间机器人应运而生。其主要任务是在太空环境下对航天器表面进行检测和维修。空间机器人不再工作于结构化的环境、完成既定的任务,它随时随地需要对周围工况进行感知和判断。
在复杂工况下完成任务的需求对机器人技术的发展起到了革命性的推动作用,使机器人技术从执行单一任务的研究,发展为结合传感器、控制器、执行器的集成技术。这一阶段,机器人可以完成人不能完成的任务,拓展了人类工作范围,突破人类在生理上的限制。
近20年来,微电子、通信、计算机、人工智能、控制和图像处理等学科的突飞猛进,为机器人的高度智能化奠定了基础。机器人不再是冷冰冰的生产工具,它逐渐成为日常生活中人类的助手和伴侣,在生活、健康、娱乐等多方面对人类提供服务,由此产生了巨大的服务机器人产业。比如,在家庭医疗监护方面,普通家庭往往只有一个温度计,必须等到病征明显才能发现疾病。医疗机器人可工作于家庭环境,对用户的生理状况做自动测量并对生理指标进行智能判断或提交医护人员,及时报警、提早诊断,达到“治未病”的效果。同时,医疗机器人还可帮助医生实现复杂的手术,减小创口、扩展视野、提高灵敏度和可控性。再如,在家庭服务方面,机器人可像一个管家一样对家居生活进行全方面的照顾,辅助老人和小孩料理生活,并在主人离开时,实现家庭监控。在这一阶段,机器人的工作对象发生了根本性的转变,由物及人,成为人类的朋友和伙伴。
尽管机器人种类千差万别、任务多种多样,但从机器人科学技术的本质上来说,主要包含三个基本要素,即感知、决策和动作。
感知功能:机器人信息的输入,就像人的五官负责采集工作环境的数据一样。感知技术主要是传感器技术和通信技术,前者负责将实际世界的物理特性转换为机器人可理解的数字量,而后者则负责将数字量快速、无误地传递到机器人的决策层。
决策功能:机器人智能性的表现,就像人的大脑对感知到的信息作出判断并为下一步动作发出指令。决策技术主要是人工智能技术及智能控制技术,它要求机器人能够实时地、闭环地处理各类工况,而不仅仅是完全按照预定程序进行开环执行。
动作功能:决策器的命令必须得到执行,而执行需要由一系列动作来得以实现,就像人的运动系统在大脑的命令下产生实际动作一样。实现动作功能的主要技术为执行机构技术,包括手臂、手爪、移动平台、驱动器,同时也涵盖了执行机构的控制器,如电机控制器、压力控制器等等。