式中UO为物体波,Ur为参考波。声强度为
上标*指共轭。记录此强度即得到全息图。用一束激光照射全息图,则可得到分别与UO与U奵相应的两个像,称为孪生像。UO真实地反映了原物体,称为真像;而U奵则为其共轭像。重现时如果用的照明波与形成全息图时所用波束的波长相同,那就如同光全息那样,重现像为与原物完全相同的立体像。但在声全息中,为了获得可见的重现像,必须用可见光来重现。可见光的波长,与用来形成全息图的声波波长相差数百倍,因此重现像有严重的深度畸变,从而失去三维成像的优点。
由于很多声检测器均能记录声波的幅度和相位,并将其转换成相应的电信号,受到人们重视的新的声全息方法与光全息方法不同,只有液面法声全息基本上保留了光全息的做法。而各种扫描声全息不再采用声参考波。扫描声全息大致可分为两类。
①激光重现声全息:用一声源照射物体,物体的散射信号被换能器阵列接收并转换成电信号,再加上模拟从某个方向入射声波的电参考信号,于是在荧光屏上形成全息图并拍照。然后,用激光照射全息图,即可获得重现像。
②计算机重现声全息:用上述方法记录换能器阵列各单元接收信号的幅度和相位,用计算机进行空间傅里叶变换,即可重现物体声像。
声成像质量的主要指标有图像的横向分辨率、纵向分辨率、信噪比、畸变和假象等。声成像的质量不仅与所用的仪器设备有关,而且在很大程度上还与声波在介质中传播的特性(如反射、折射和波型转换)有关。
声成像技术已得到广泛应用,主要用于地质勘探、海洋探测、工业材料非破坏探伤和医学诊断等方面。特别是,B型断层图像诊断仪已成为与X射线断层扫描仪和同位素扫描仪并列的医学三大成像诊断技术之一。
由于声波在水中的传播特性显著优越于电磁波和可见光,受水的浑浊度的影响小,因而水声探测成为水下测量的主要手段。目前的各种声纳系统,仍是执行水下观察与探测任务的主要手段,尤其是在大范围、远距离目标搜索和定位方面有着其它方法无可替代的优势。