PTC基础知识
PTC热敏电阻
PTC是Positive Temperature Coefficient 的缩写,意思是正的温度系数, 泛指正温度系数很大的半导体材料或元器件。通常我们提到的PTC是指正温度系数热敏电阻,简称PTC热敏电阻。PTC热敏电阻是一种典型具有温度敏感性的半导体电阻,超过一定的温度(居里温度)时,它的电阻值随着温度的升高呈阶跃性的增高。
PTC热敏电阻组织结构和功能原理
陶瓷材料通常用作高电阻的优良绝缘体,而陶瓷PTC热敏电阻是以钛酸钡为基,掺杂其它的多晶陶瓷材料制造的,具有较低的电阻及半导特性。通过有目的的掺杂一种化学价较高的材料作为晶体的点阵元来达到的: 在晶格中钡离子或钛酸盐离子的一部分被较高价的离子所替代,因而得到了一定数量产生导电性的自由电子。对于PTC热敏电阻效应,也就是电阻值阶跃增高的原因,在于材料组织是由许多小的微晶构成的,在晶粒的界面上, 即所谓的晶粒边界(晶界)上形成势垒,阻碍电子越界进入到相邻区域中去,因此而产生高的电阻,这种效应在温度低时被抵消: 在晶界上高的介电常数和自发的极化强度在低温时阻碍了势垒的形成并使电子可以自由地流动。 而这种效应在高温时,介电常数和极化强度大幅度地降低,导致势垒及电阻大幅度地增高 ,呈现出强烈的PTC效应。
PTC热敏电阻制造流程
将能够达到电气性能和热性能要求的混合物 (碳酸钡和二氧化钛以及其它的材料) 称量、混合再湿法研磨, 脱水干燥后干压成型制成圆片形、长方形、圆环形、蜂窝状的毛坯。 这些压制好的毛坯在较高的温度下(1400℃左右)烧结成陶瓷,然后上电极使其表面金属化,根据其电阻值分档检测。 按照成品的结构形式钎焊封装或装配外壳,之后进行最后的全面检测。
称量>>球磨>>预烧结>>造粒
>>成型>>烧结>>上电极>>阻值分选
>>钎焊>>封装装配 >>打标志>>耐压检测
>>阻值检测 >>最终检测>>包装>>入库
PTC热敏电阻与温度的依赖关系(R-T特性)
电阻-温度特性通常简称阻温特性,指在规定的电压下,PTC热敏电阻零功率电阻与电阻体温度之间的依赖关系。
零功率电阻,是指在某一温度下测量PTC热敏电阻值时,加在PTC热敏电阻上的功耗极低,低到因其功耗引起的PTC热敏电阻的阻值变化可以忽略不计。额定零功率电阻指环境温度25℃条件下测得的零功率电阻值 。
Rmin:最小电阻
Tmin:Rmin时的温度
RTc:2倍Rmin
Tc:居里温度
T25 TminTcT(℃)
表征阻温特性好坏的重要参数是温度系数α,反映的是阻温特性曲线的陡峭程度。温度系数α越大,PTC热敏电阻对温度变化的反应就越灵敏,即PTC效应越显著,其相应的PTC热敏电阻的性能也就越好,使用寿命就越长。PTC热敏电阻的温度系数定义为温度变化导致的电阻的相对变化 。 α = (lgR2-lgR1)/(T2-T1)一般情况下,T1取Tc+15℃、T2取Tc+25℃来计算温度系数。
电压和电流的关系(V-I特性)
电压-电流特性简称伏安特性, 它展示了PTC热敏电阻在加电气负载达到热平衡的情况下,电压与电流的相互依赖关系。
Ik在外加电压Vk时的动作电流
Ir外加电压Vmax时的残余电流
Vmax最大工作电压
VN额定电压
VD击穿电压
PTC热敏电阻的伏安特性大致可分为三个区域:
在0-Vk之间的区域称为线性区,此间的电压和电流的关系基本符合欧姆定律,不产生明显的非线性变化, 也称不动作区。在Vk-Vmax之间的区域称为跃变区,此时由于PTC热敏电阻的自热升温,电阻值产生跃变, 电流随着电压的上升而下降,所以此区也称动作区。在VD以上的区域称为击穿区,此时电流随着电压的上升而上升,PTC热敏电阻的阻值呈指数型下降,于是电压越高,电流越大,PTC热敏电阻的温度越高,阻值反而越低, 很快就导致PTC热敏电阻的热击穿。伏安特性是过载保护PTC热敏电阻的重要参考特性。
电流和时间的关系(I-t特性)
电流-时间特性是指PTC热敏电阻在施加电压的过程中,电流随时间变化的特性。 开始加电瞬间的电流称为起始电流,达到热平衡时的电流称为残余电流。
一定环境温度下,给PTC热敏电阻加一个起始电流(保证是动作电流), 通过PTC热敏电阻的电流降低到起始电流的50%时经历的时间就是动作时间。电流-时间特性是自动消磁PTC热敏电阻、延时启动PTC热敏电阻、过载保护PTC热敏电阻的重要参考特性。