本节介绍拉普拉斯变换(也称为拉氏变换)的基本性质,了解掌握了这些性质,可以更加方便地求解各种拉普拉斯正反变换。
一、线性定理
设 则:
(式9-2-1)
式中为常系数。
例9-2-1 求、和的拉氏变换。
解:
同理:
二、微分定理
设 ,则:
(式9-2-1)
同理可推广得到的高阶导数的拉氏变换式:
例9-2-2:
已知,求。
解:由于,由(式9-2-2)得:
同理:
三、积分定理
设,则:
(式9-2-3)
例9-2-3 求。
解:斜坡函数是单位阶跃函数的积分,由(式9-2-3)得:
四、时域位移(延时)定理
设,则:
(式9-2-4)
例9-2-4:求图9-2-1所示函数的拉普拉斯变换式。
解:由图可知:
五、复频域位移定理
设,则:
(式9-2-5)
例9-2-5:已知
求:和的拉普拉斯反变换。
解:利用复频域位移定理:
六、卷积定理:
设,则:
(式9-2-6)
例9-2-6.求的拉普拉斯反变换式。
解:已知,利用卷积定理得:
同理可推得:
七、初值定理
设,则
例9-2-7.设,验证初值定理。
解:
又:
,所以,得证!
八、终值定理:
设,则
例9-2-8.仍设,验证终值定理。
解:
,又
所以,得证!
注意:利用终值定理求的前提条件是必须存在,且是唯一确定的值。