技术中心
 
 

真正的实时工业以太网技术Ethernet POWERLINK

   日期:2009-02-14     作者:管理员    
  1.      引言
  曾几何时,现场总线方案给自动化行业带了辉煌的发展,然而随着工业自动化的发展,目前的现场总线方案已经不能完全适应市场的需求,未来对于自动化的解决方案有了新的要求:
  n    速度相比现场总线有大幅度的提高;
  n    由于任务越来越多,越来越复杂,要求网络能够承载大量的数据交换;
  n    对不可测事件的反应时间的要求提高了;
  n    最大限度的使用标准的,可靠的技术,以降低开发成本。
  于是快速以太网技术进入人们的视野,它以至少10倍于现有现场总线的速度(100Mbps)完全满足了未来工业网络对于速度的要求,并且技术成熟可靠。然而快速以太网CSMA/CD的工作原理决定了它不是一个实时的网络,这对于未来的工业自动化控制是不可接受的。
  奥地利贝加莱(B&R)公司在这方面做出了贡献,她以快速以太网为基础,开发出了真正的实时工业以太网——Ethernet POWERLINK。贝
加莱2001年首次向公众介绍Ethernet POWERLINK,同年11月EPSG(Ethernet POWERLINK Standardization Group)联盟成立,2003年6月EPSG协会成立并和CiA(CAN in Automation)开展合作,同年11月由EPSG介绍Ethernet POWERLINK V2。到目前为止,有超过150,000个节点投入使用,超过300个支持者、供应商和终端用户。
  2.      Ethernet POWERLINK技术特点
  n    单个网段最多连接240个实时站点;
  n    真正的确定性通讯
         达到IAONA实时等级4级(最高等级);
          快速,100Mbit/s,最小循环周期200us;
         网络站点之间精确同步,抖动小于1us;
  n    标准化
         底层技术采用IEEE802.3u,快速以太网;
 

      
  图1:抖动定义

  支持IP协议(TCP,UDP…);
  集成CANopen行规EN50325-4,实现设备的互操作性;
   基于标准的以太网芯片,不需要特别的ASICs;
  n    直接点到点通讯
  n    支持热插拔
  n    支持多CPU解决方案,优化负载,使之大体平衡。


  图2:负载平衡


  Every Cycle:Station 1,2,3;Multiplexed:Station 4-11
  -拓扑结构灵活,支持总线型,星型,树型,菊花链。。。
  3.      Ethernet POWERLINK技术原理


  图3:EPL参考模型


         Ethernet POWERLINK物理层,MAC层:遵循IEEE802.3u,100Base-TX

               Ethernet POWERLINK帧在以太网的数据域里传输。

        

 

        Ethernet POWERLINK数据链路层(EPL Datalink Layer)
  EPL数据链路层以标准的以太网CSMA/CD技术(IEEE802.3)为基础,但是CSMA/CD的工作原理决定了它不能实现通讯的确定性,于是EPL引入SCNM(Slot Communication Network Management)机制,实现了数据通 讯的确定性。
  SCNM给同步数据和异步数据分配时槽,保证了在同一时间只有一个设备可以占用网络媒介,从而彻底杜绝了网络冲突的发生。SCNM由EPL网络中的管理节点MN(Managing Node)来管理,其他的节点称为控制节点CN(Controlled Node)。
  SCNM规定在一个EPL网络中只有一个激活的MN,MN配置网络中所有可用的节点。只有MN可以独立地发送数据,CN只有在得到MN允许的情况下发送数据。


  图4:SCNM概念

  SCNM协议按照一定的规则预先计划并组织了消息组,一个消息组设为一个EPL循环(见图2)。在每个循环中可以分为同步阶段和异步阶段,同步阶段每个同步节点占有固定间隔的时槽,由MN轮流访问,从而实现通讯的确定性。异步阶段发送非实时数据,数据传送由MN调度。
  EPL循环可以分为4个阶段:开始阶段,同步阶段,异步阶段和空闲阶段。每个阶段的时间由MN预先配置,长度可以不同。MN随时监控循环时间,以保证预设的时间不发生冲突。一旦冲突发生,MN自动延续到下一个循环的开始位置。



  图5:EPL循环


  图6:循环时间冲突时MN的处理方式


  开始

阶段:
  MN广播发送Start-of-Cyclic(SoC)帧开始通讯周期。它的发送接收时间作为所有站点时序的基础。只有SoC帧由时间控制,其他帧由事件控制。
  同步阶段:
  MN发送SoC帧后开始同步数据交换。MN发送指定地址的单向请求帧PollRequest给CN,目标CN广播发送响应帧PollResponse给其他所有的节点,允许其他所有的节点监控该帧。PollRequest和PollResponse都可以传输应用数据。MN循环访问完同步节点后,MN广播发送响应帧PollResponse。
  异步阶段:
  MN发送SoA(Start-of-Asynchronous)帧表示异步阶段的开始,SoA帧用来标记非激活的CNs,给要发送异步数据的CN令牌,以及给CN发送异步数据的权限。
  异步数据的发送由MN进行调度,如果CN要发送异步数据,它在PollResponse帧或StatusResponse帧中通知MN。MN的异步数据调度器会决定在哪个循环可以发送异步帧。这决定了发送请求不会被无限期地拖延,即使在网络负载很高的情况下。
  空闲阶段:
  空闲阶段是异步阶段结束和下一个循环开始之间的时间间隔,在这个阶段,所有的网络组件“等待”下一个循环的开始。
  “Active”节点的识别
  MN配置有网络中所有节点的列表。MN启动的时候,所有的CNs被标记为“Inactive”,然后这些CNs被IdentRequest帧(特别的SoA帧)周期访问。当CN接收到标有自己地址的IdentRequest帧时,它在同一个异步周期中返回响应帧IdentResponse。当MN接收到CN来的响应帧IdentResponse时,该CN被标记为“Active”。
  Ethernet POWERLINK应用层
  EPSG组织和CiA(CAN in Automation)合作,把CANopen的EN50325-4规约移植到EPL中来。每一种符合EPL标准的设备都由一个统一的设备模型来描述。设备模型的核心部分是通过对象字典(Object Dictionary)对设备功能进行描述。对象字典分为两部分,第一部分包括基本的设备信息,例如设备ID,制造商,通信参数等等。第二部分描述了特殊的设备功能。一个16位的索引和一个8位的子索引唯一确定了对象字典的入口。通过对象字典的入口可以对设备的"应
  用对象"进行基本网络访问,设备的"应用对象"可以是输入输出信号,设备参数,设备功能和网络变量等。

  高同步精度数据通过过程数据对象PDO(Process Data Object)进行数据交换。网络中每个站点都可以读取PDO,并对它进行处理。PDO最大长度1490字节,最多可以有254个PDO对象。
  参数下载,诊断数据等非关键数据可以放在服务数据对象(SDO)中传输,非同步段的SDO的传输遵循客户端/服务器模式。网络中任何一个EPL站点都可以通过对象字典(Object Dictionary)访问另一个站点的SDO,数据量的大小没有限制。同时SDO协议允许标准IP 帧通过UDP/IP通道访问。这就使得外面的系统通过EPL路由可以直接访问该设备的对象字典(OD)。
  4.      未来展望
  Ethernet POWERLINK未来的发展方向为安全性和快速性。
  现场总线的安全性都朝着智能化的方向发展,EPL也不例外。EPSG正在制定Ethernet POWERLINK Safety协议规范,有望在近期推出。EPL Safety以EPL为基础 ,着重强调整体安全的概念,主要特点为系统的离散性、灵活性、快速性和开放性。
  目前已经发展到了千兆以太网,由于Ethernet POWERLINK和以太网有着很好的继承性,可以预见在不久的将来,千兆工业以太网Ethernet POWERLINK会出现在实际的工业应用现场。

 
  
  
  
  
 
更多>同类技术
 
全年征稿 / 资讯合作
 
推荐图文
推荐技术
可能喜欢