0 引言
在工业过程控制系统中液位对象是一种十分普遍的对象,对液位对象的监测与控制是系统实现其功能必不可少的环节。在过去,液位的监控装置多数是使用单片机实现点对点控制和显示[1],工作人员必须到工业现场操作这些仪器,且单片机功能十分有限,只能完成一些相对简单的操作。
随着网络通信技术的发展,以太网在工业控制领域的应用日趋广泛,基于以太网的远程监控系统实现远程监测、控制和管理的有效集成[2]。使用远程监控系统通过网络对工业生产过程进行监测,及时了解现场信息,快速进行决策。
远程控制的关键技术在于如何解决工业现场设备的网络接入问题。目前,主要有两种方法:一种是使用PC机通过PC机端口(如RS232、USB接口)或数据采集卡来采集数据同时提供网络接口[3],这种方法利用强大的PC机软件支持,容易实现网络通信功能,但是PC机端口资源有限,专用采集卡成本较高,难以推广;另一种就是在现场使用嵌入式系统实现网络接入,嵌入式系统具有功耗低、体积小、成本低、可靠性高、实时性强等特点,使用在工业控制现场比较合适。
本文将嵌入式技术和网络技术相结合,在现场利用嵌入式系统实现网络通信
1 远程液位监控系统结构
本文设计的远程液位监控系统结构如图1所示:其中,处理器芯片采用ARM微处理器S3C44B0X;S3C44B0X自带8路10位ADC进行A/D转换来采集液位数据,通过扩展DAC0832实现D/A转换以输出控制量;S3C44B0X连接10M以太网卡RTL8019AS,提供网络功能的硬件接口;μC/OS-Ⅱ移植到S3C44B0X上,提供操作系统的支持,方便了应用程序的开发和对整个系统的管理;嵌入式TCP/IP协议栈LwIP移植到μC/OS-Ⅱ平台上,实现对网络数据的软件处理,从而为嵌入式系统提供网络通信功能;远程PC机客户端登录到嵌入式系统服务器上,通过以太网实现两端数据的实时交互。
图1 远程液位监控系统结构图
2 硬件介绍与设计
三星的S3C44B0X微处理器芯片采用ARM公司16/32位ARM7TDMI RISC结构的CPU核,主频为66MHz,通过扩展一系列通用外围部件,提供丰富的外设功能。它的存储系统具有8个存储体,每个有32MB的存储空间,通过nGCS0-7这8个片选来分配。本文使用的设计方案中nGCS0接Flash芯片AM29LV160DB,起始地址0x00000000,大小为2MB,nGCS6接SDRAM芯片HY57V641620ET-7,起始地址为0x0c000000,大小为8MB,nGCS3接RTL8019AS,起始地址为0x06000000。
RTL8019AS是一款高度集成的全双工以太网控制器,收发可同时达到10Mbps的速度;支持8位、16位数据总线,8个中断请求线可供选择;支持UTP、AUI和BNC的自动检测;内置16K的SRAM,用于数据缓冲,以256B为单位的分页结构,可以自行分配用于收发的分页的大小和位置,一般前12页用于发送缓冲,后52页用于接收缓冲;硬件自带收发CRC校验、FIFO逻辑队列等,减少了主CPU处理网络数据的工作量。S3C44B0X对RTL8019AS的操作主要集中在对网卡寄存器的读写和网卡内SRAM的处理。
3 软件设计
3.1 基于嵌入式系统的服务器端程序设计
3.1.1 S3C44B0X上μC/OS-Ⅱ的移植
嵌入式操作系统μC/OS-Ⅱ可以运行于各种不同类型的微处理器上,其内核小、效率高,并且具有高度的模块化和可移植性,支持多任务实时调度,扩展后可支持网络功能、图形界面等,使得应用程序的开发更加简单,功能更加丰富。
在使用μC/OS-Ⅱ之前,要先将它移植到S3C44B0X上,移植工作主要包括三个方面[4]:
(1) 设置与处理器和编译器相关的代码,包括一系列数据类型的定义,开中断宏、关中断宏的实现,定义堆栈的生长方向;
(2) 用C语言编写6个操作系统相关的函数:OSTaskStkInit()初始化任务的堆栈结构,和5个钩子函数OSTaskDelHook()、OSTaskSwHook()、OSTaskStatHook()、OSTimeHook()、OSTaskCreateHook();
(3) 用汇编语言编写4个与处理器相关的函数:运行优先级最高的就绪任务函数OSStartHighRdy(),任务级的任务切换函数OS_TASK_SW(),中断级的任务切换函数OSIntCtxSw(),时钟节拍服务函数OSTickISR()。
3.1.2 μC/OS-Ⅱ上TCP/IP协议栈的实 现
LwIP(Light-weight IP)是瑞典计算机科学院(Swedish Institute of Computer Science)的Adam Dunkels等开发的一套开源的TCP/IP协议栈[5],LwIP在保持TCP/IP协议主要功能的基础上减少对RAM的占用,这使得它适合在低端嵌入式系统中使用。
LwIP协议栈在设计时已经把所有与硬件、操作系统、编译器等移植相关的部分独立出来,放在/src/arch目录下。因此LwIP在μC/OS-Ⅱ上的实现就是修改这个目录下的文件[6]。
(1) 与CPU、编译器相关的部分
主要是cc.h、cpu.h、perf.h文件中有关数据长度、字的高低位顺序等的定义,这些应该与实现μC/OS-Ⅱ时参数的定义保持一致。另外,一般情况下C语言的结构体struct是4字节对齐的,但是在处理数据包的时候,LwIP使用的是通过结构体中不同数据的长度来读取相应的数据,所以,一定要在定义struct的时候使用_packed关键字,让编译器放弃struct的字节对齐。
(2) 与操作系统相关的部分
LwIP中需要使用信号
LwIP使用消息队列来缓冲、传递数据报文,因此要在sys_arch.h、sys_arch.c中实现消息队列结构体sys_mbox_t,以及相应的操作函数:包括创建一个消息队列sys_mbox_new(),释放一个消息队列sys_mbox_free(),向消息队列发送消息sys_mbox_post(),从消息队列中获取消息sys_arch_mbox_fetch()。
LwIP中每个与外界网络连接的线程都有自己的timeout属性,即等待超时时间,移植工作需要实现sys_arch_timeouts()函数,返回当前正处于运行态的线程所对应的timeout队列指针。
LwIP中网络数据的处理需要线程来操作,所以需要实现创建新线程函数sys_thread_new()。而在μC/OS-Ⅱ中,没有线程的概念,只有任务。因此必须要把创建新任务的函数OSTaskCreate()封装一下,才可以实现sys_thread_new()。
(3) 相关库函数的实现
LwIP协议栈中用到了8个外部函数,主要是来完成16位数据的高低字节交换、32位数据的大小头对调、返回字符串长度、字符串比较、内存数据块拷贝、指定长度的数据块清零等功能,与系统或编译器有关,需要用户实现。
(4) 网络设备驱动程序
在LwIP中可以有多个网络接口,每个网络接口都对应了一个netif结构,这个netif包含了相应网络接口的属性、收发函数。在网络设备驱动程序中主要就是实现四个网络接口函数:网卡初始化、网卡接收数据、网卡发送数据以及网卡中断处理函数。
3.2 PC机上客户端程序的设计
VC++6.0环境下客户端程序实现包括以下几个部分:
(1) 建立客户端的Socket:客户端应用程序首先构造一个CAsyncSocket[7]对象CltSock,然后调用CltSock.Create()函数来建立CltSock实体。
(2) 提出连接请求:客户端套接字CltSock通过调用CltSock.Connect(strAddr,nPort)函数向服务器套接字提出连接请求。
(3) 传输数据:在客户端应用程序中重载消息处理函数OnReceive()和OnSend()。在OnReceive()中通过调用CltSock.Receive()函数从服务器端接收数据;在OnSend()中通过调用CltSock.Send()函数向服务器端发送数据。
(4) 关闭连接:客户端套接字CltSock通过调用CltSock.Close()函数来关闭连接。
4 远程液位监控应用程序的开发
本文设计完成的基于以太网的远程液位继电自整定PID控制系统,其控制算法在远端主机(客户机)上实现,两端通过TCP协议通信,本地的嵌入式系统 (服务器)上一方面实现对网络数据的处理,一方面完成对液位高度的采集与控制;远端PC机上一方面处理网络上的实时数据,一方面通过PID计算出控制量,显示相关参数。实时液位变化状况如图2所示,从图中可以看出,实际液位(红色曲线)能够稳定在液位设定值(蓝色曲线)处。同时,从用户界面上既可以读出液位高度值,PID自整定参数等,还可 以改变液位高度设定值,从而真正实现了液位对象的远程监控。
图2 远程液位继电自整定PID控制效果图
5 结语
本文设计解决了在嵌入式系统中实现网络功能的问题,引入并实现了一种新的设计方案,即采用三星ARM7处理器S3C44B0X+Realtek的10M网卡RTL8019AS硬件组合,通过在μC/OS-Ⅱ操作系统内核的支持下,添加嵌入式TCP/IP协议栈LwIP,来实现网络通信的功能,与PC机客户端的Socket通信,在此基础上开发了基于以太网的远程液位监控系统,达到了良好的控制效果。可以看出,这类系统在远程监控中的具有良好的应用前景。
本文作者创新点:本文将嵌入式网络技术引入到工业过程远程监控领域,提出了自己的设计方案,并成功开发了一个远程液位监控系统。
参考文献
[1] 张念鲁,王红,李秉权,采用多单片机的液位监控仪,单片机与嵌入式系统应用,2005 No.1:59-60.
[2] 李建平,基于以太网络的远程监控系统,郑州大学学报(工学版),2002 Vol.23 No.3:81-83.
[3] 梁惺彦,和卫星,LabVIEW实现远程数据采集
[4] Jean J. Labrosse, 邵贝贝等译.嵌入式实时操作系统μC/OS-Ⅱ.北京:北京航空航天大学出版社.2003.
[5] Adam Dunkels. Design and Implementation of the LwIP TCP/IP Stack. Swedish Institute of Computer Science. 2001.
[6] 杨晔,实时操作系统μC/OS-Ⅱ下TCP/IP协议栈的实现,单片机与嵌入式系统应用,2003,No.7:80-83.
[7] 马亲民,熊文辉,利用MFC Socket类实现TCP/IP通信,通信技术,2002,No.1:37-39.