技术中心
 
 

基于GCC的嵌入式程序插装技术

   日期:2008-01-24     作者:管理员    

引 言
       程序插装(Program Instrumentation)概念最先是由J.G.Huang教授提出,是借助往被测程序中插入操作(称为“探针”),以便获取程序的控制流和数据流信息,从而实现测试目的的方法。在软件动态测试中,程序插装是一种基本的测试手段,应用广泛,是覆盖率测试、软件故障注入和动态性能分析的基础技术。

       GCC(GNU ComPIler Collection)是一个高度优化,高度可移植,广泛使用的编译系统。它能处理多种语言,包括C/C++、Fortran、Java和Pascal等多种语言前端,而且后端支持几乎所有的处理器结构。GCC作为源码开放的软件,人们可以自由修改和使用;加入插装模块后,在GCC所支持的语言中都可插入相应的测试代码(这里只介绍C语言的插装模块)。本文将详细叙述如何修改GCC,使其在编译每个C函数时,分别将各个形式参数连同该函数名传递给一个指定函数。该指定函数的返回值赋予原来的形式参数,从而可以人为控制被插装函数的每

个参数实际值,进而完成各种规则下的测试。


1 GCC编译流程分析
       编译器的工作是将源代码(通常使用高级语言编写)翻译成目标代码(通常是低级的目标代码或者机器语言)。在现代编译器的实现中,这个工作一般是分为两个阶段来实现的:

       第一阶段,编译器的前端接收输入的源代码,经过词法、语法和语义分析等得到源程序的某种中间表示方式。
       第二阶段,编译器的后端将前端处理生成的中间表示方式进行一些优化,并最终生成在目标机器上可运行的代码。

       GCC编译器以一个函数为单位对经过预处理的输入源文件进行编译处理。根据GNU Bison(一个类似YACC但功能更强大的文法分析工具)生成的语法分析程序,前端完成语法、语义分析,建立语法树,并转换成中间代码。GCC内部使用了一种能对实际的体系结构做一种抽象的,与硬件平台无关的语言,这个中间语言就是RTL(Register Ttansfer Language)。通过修改源程序的RTL,可以改变、删除源程序,包括插入所需要的代码,由GCC后端处理并最终输出对应硬件平台的汇编码,源程序无需手工修改便可实现插装功能。

       GCC的入口点main函数在文件main.c中。此函数非常简单,只有一条直接调用toplev_main函数的语句。toplev_main函数是在toplev.c文件中定义的,以下我们只关心与编译有关的源码,其他的暂时忽略。toplev_main中最重要的是调用了do_complile函数,这个函数从名字看就是做编译工作的;而在此之后,toplev_main函数就返回了。dD_compile函数也是在tokv.c中定义的,其中真正进行编译工作的是调用compilte_file函数。compik_file函数最终调用了一个钩子函数来分析(parse)整个输入文件:

        (*lang_hooks.parse_file)(set_yydebug);
        这里的lang_hooks是一个全局变量,不同语言的前端对此赋以不同的值。对C语言来说,这条语句相当于调用了c-opts.c中的c_common_parse_file函数。c_com-mon_parse_file中调用了c-parse.c中的c_parse_file函数;在此函数中又调用了同文件中的yyparse函数,该函数负责解析C语言源文件,并转化为特殊的语法树结构。该函数是GNU bison将YACC转变为C语言而自动生成的,所以这段代码阅读起来比较困难,但我们并不关心语法分析的细节。在完成函数体的分析后,利用已经建立的tree结构生成RTL,优化后最终输出汇编码;自此C函数的编译就算结束了,这些是由yyparse调用finish_function函数完成的。finish_function函数中最重要的函数是tree_rest_of_compilation(定义在tree_optimize.c中),它是真正实现上述功能的函数。为了说明它所做的具体事情,我们将该函

数做了删减,保留了关键的地方。

将函数各个部分展开成RTL形式后调用函数rest_of_comPIlation将RTL输出为汇编码至此得到了一张清晰的GCC编译时的函数调用路线如表1所…
    将函数各个部分展开成RTL形式后,调用函数rest_of_comPIlation将RTL输出为汇编码。至此,得到了一张清晰的GCC编译时的函数调用路线,如表1所列。

基于GCC的嵌入式程序插装技术如图

2 基于GCC的程序插装技术
    根据插装测试的要求,需要在函数开始时为每个参数调用钩子函数,并用钩子函数的返回值更新参数的值;同时,将被插装函数的名称压入函数本地栈内,作为该函数的一个匿名本地变量,只用于传递给钩子函数。从上面列出的tree_rest_of_compilation函数源码得知,负责建立被编译函数参数和返回值的函数是expand_function_start,定义是在文件function.c中。expand_function_start中处理函数参数和返回值的函数是assign_pARMs,这是需要特别关注的函数。以下是该函数简化的伪码:

斜体加粗的部分是增加的代码在for循环前获得当前编译的函数名见源码中①位置;但暂时不能输出到函数的RTL链中因为本地栈要在所有…
       斜体加粗的部分是增加的代码。在for循环前,获得当前编译的函数名(见源码中①位置);

但暂时不能输出到函数的RTL链中,因为本地栈要在所有参数传递完毕才完全建立起来。在for循环体结束前,记录下函数参数的一份拷贝(见②),最后调用。insert_function_name_local函数,将当前函数名插入本地栈,并且修正栈指针(见③)。经过以上修改,得到了插装所需的所有信息,包括函数参数和函数名称的RTX表示。GCC将函数编译后生成的RTX表示以链表形式组织,最后一次性把这个RTX链表输出为后端平台的汇编码。完成这项工作的是rest_of_compilation函数,所以在调用rest_of_complilation函数前插入我们的RTX,最终完成插装,由函数inject_rtl负责完成。下面是inject_rtl的主要代码:

基于GCC的嵌入式程序插装技术如图


3 APCS与程序插装实现

      编译器必须以一套统一的方法编译函数的定义和调用过程,才能确保不同语言编写的函数能相互调用。规定这些细节的便叫作“函数调用规范(Procedure Call Stand-ard)”。ARM体系结构定义了自己的函数调用规范——ARM函数调用标准(ARM Procedure Call Standard,APCS)。虽然APCS不是强制性的,但实现APCS并不困难,而且可获得统一的二进制兼容的好处,所以大部分的编译器都实现了APCS,其中包括GCC。

    APCS中函数传递参数的定义如下:
    ◇前4个整数实参(或者更少)被装载到r0~r3。前4个整数实参(或者更少)被装载到r0~r3。
    ◇前4个浮点实参(或者更少)被装载到f0~f3。
    ◇如果参数为双字(8字节),就必须从偶数寄存器开始放置。
    ◇如果一个参数不能完全放入寄存器中,则超过的那部分拷贝到栈中。

       其他任何实参(如果有的话)存储在内存中,用进入函数时紧接在sp值上面的字来指向。换句话说,其余的参数被压入栈顶。所以,要想简单,最好定义接受4个或更少的整数参数的函数。

       本文所述的插入函数只有两个整型形参,所以调用时只需将两个实参分别传入ro和rl。GCC提供emit_li-brary_call函数用来生成函数调用的RTL码,GCC将按照APCS产生正确的函数调用汇编码。函数定义在calls.c中,原型为:

插入所需函数后需要将返回值赋值给对应的被插装函数的形参以下是插入函数insert_parms_test_function的完整代码
      插入所需函数后,需要将返回值赋值给对应的被插装函数的形参。以下是插入函数insert_parms_test_function的完整代码:

基于GCC的嵌入式程序插装技术如图

 


4 实 例
      为便于检查插装效果,用经过修改的GCC编译一段简单的C语言程序。该程序为一个独立函数foo,接受两个整数类型的参数。具体代码如下:

    基于GCC的嵌入式程序插装技术如图

       从GCC输出的汇编码可以看到,foo函数的两个参数都经过钩子函数pt_hook_partns的处理更新;在pt_hook_parms函数内,可以根据测试算法返回不同的边界值,从而达到测试

的目的。依照此方法,一个实际程序经过插装后,在ARM模拟器上顺利运行,并取得预期的测试效果。

结语
       本文详细地论述了修改GCC增加插装功能的实现方法。按照这样的思路,成功地实现了基于ARM7芯片的嵌入式系统的动态参数边界测试,达到了预期的效果。本文所述的插装函数比较简单,没有区分参数的类型,所有参数均按照一个字大小来处理;下一步的工作是细分参数不同类型,插装不同的处理函数。作为一种通用的插装方法,在此摹础上.通过识别不同的插装点和插装不同的函数,可以实现函数调用栈检查,程序覆盖率测试,获取函数实际执行时间等需要插装技术作为基础的功能。

 
  
  
  
  
 
更多>同类技术
 
全年征稿 / 资讯合作
 
推荐图文
推荐技术
可能喜欢