二、原理及分析
首先应该指出,传统的变径管可以经过缩径,并配以较小口径的流量计来达到测量小流量的目的,但是这种方法不可能扩大仪表的量程比,因为它并末改变管道的流速分布状态。我们知道,涡街流量计的理论及推导是基于在无穷大的均匀流场中得到的,而在实际封闭圆管中,却是非均匀流场,横断面的流速分布是一回转抛物面,虽然选择合理的柱型,使柱体两侧弓形面的流速分布均匀,但实际上,工艺管道上回转抛物面的流速分布的影响是客观存在的。实验表明在比较大的流量时,这个影响较小,或说这个影响在允许的范围内;但随着流量的下降,这个影响越来越大,从大量标定数据看,仪表常数总是随着流量的减小而增大。这说明取样点的流速与平均流速差异越来越大。
采用了变径整流器后(见图2),由于缩经断面的流速在逐渐增大,在断面上各点流速的增加是不一样的,靠近中心流速增加小,而靠近喉径边沿处流速增加大。 设整流器进口处压力为P1,平均流速为V1,某点上的速度不均匀度为U1,出口处压力为P2,平均流速为V2,通过进口处某点同一流线,在出口处的速度不均匀度为U2,沿该流线,由伯努利方程得: |
|
|
由式(6)可见,收缩比对出口处流速均匀度的影响,即对于一定的进口速度不均匀度,
出口处的速度不均匀度将缩小n2倍。因此出口处流速趋于均匀,更接近涡街流量计理论的均匀流场的条件,不仅使漩涡趋于稳定,且提高了仪表的测量范围。另外,这种变径整流器,在流体动能的转换过程中有效的抑制了干扰。