(一)流速分布的影响
只要管内流速为轴对称分布,则电极上产生的感生电动势大小与流动状态无关,不论它是层流还是紊流,仅与流体的平均流速成正比.因此,流速分布为轴对称是电磁流量计必须满足的工作条件之一.
假如,流速分布相对管中心为非对称时,测量就会产生误差.因为电极上得到的感生电动势e是测量管内所有液体共同贡献的结果,所以每一个流体质点都有贡献。但由各个流体质点相对于电极的几何位置不同,故即使各质点速度一样,它们对电动势e的贡献也是不同的.越靠近电极的质点对电动势e的贡献越大.也就是说,电极附近的感生电动势较大,与两电极平面成90°的地方的流体产生的感生电势就小.所以,如果电极附近的流速非轴对称的偏大,测得的流量信号就比实际流量值大;反之,电极附近的流速非轴对称的偏小,测得的流量信号也就偏小.因此,为了消除由于流速分布而产生的测量误差,在电磁流量变送器的应有一定长度的直管段,以保证流速的铀对称分布.
(二)磁场边缘效应的影响
由前述的基本假定可知,e=DB 这一基本表达式是在“长筒流量计”的模型条件下推得的,即假定沿流体的流动方向上磁场始终是均匀的.实际上,这意味着沿管轴方向上的磁场为无限长,而实际流量计的磁场是有限长的,所以就必须考虑有限长磁场产生的边缘效应对测量的影响。
1.绝缘管壁
图3—34为流量计测量管的纵向视图.设磁场长度为2L,测量管半径为a.电极A和B在磁场中部。则从图中可见:磁场的中间部分,即电极附近大致是均匀的,两端则逐渐减弱,形成不均匀的磁场边线,段后下降为零.这样,在电极附近产生的感生电势较大,两端则较小,从而造成液体内部电场外有的不均匀而产生涡电流.由涡电流产生的二次磁通,反过来又改变磁场边缘部分的工作磁通,使磁场的均匀性进—步遭到破坏。所以,电极上得到的感生电势与无限长磁场下的感生电动势有差别,使测量信号产生误差.
图3-34 磁场边缘效应
设在磁场轴向长度为2L时,电极A和B之间的感生电动势用eAB表示,而无限长磁场时(L→ )的感应电动势为e.用S来表示它们的比值,即
S= (3-47)
显然,我们希望S值越接近于1越好。也就是说,希望磁场轴向长度为有限长时电极上产生的感生电动势尽可能接近于无限长时的值.若以L/d表示磁场轴向长度与管道内径之比,则根据计算,在测量管是绝缘管壁的条件下,S与L/d的关系如图3—35所示.由图可知,在保证S=0.99的情况下,L/ d的比值范围大致为L/d=2.8—3.04.这就是说,为了减少磁场地缘的影响,励磁线圈的长度应为测量管内径的2. 8—3.04倍,这样才可以使电极上产生电动势接近于无限长磁场时的值。
图3-35 S与L / d的关系