六、马蒲数(流速比)
流体的流动速度(V)和声音在该流体内传播的速度(c)之比,称为马赫数(M),M= .在气体动力学中,它是划分气体流动类型的一个标准,又是判断气体压缩性的一个尺度。
在气(汽)体中,压力以声速相对于气体传播.当气(汽)体以流速V流动时,在顺流情况下,压力向下游传播的速度是c+V;在逆流情况下,压力向上游传播的速度是c-V,因此,
当V>c时,下游压力的改变不会向上游传播。音速喷嘴就是利用这一原理达到恒定酌临界流量的。当马赫数M>l时,称为超音速流动;M<1时,称为亚音速流动.在超音速和亚音速流功情况下,气(汽)体表观的特性有本质的区别。
流体的压缩性是指机体在流场中相对密度的变化。实验证明,随着气(汽)体流速增加,气(汽)流中的压力梯度也增加,则流体的密度就不能视为常数。因此,马赫数就可用作衡量气体压缩性的标准。流体在流场中相对密度的变化( / 。)和马赫数是什么关系?工程上常遇到的等熵过程(例如气体在喷嘴或叶片中的流动)的表达式为
式中 X——等熵指数;
M——马赫数;
——气体在流动状态下的密度;
0——气体在滞止状态(流速等于零)下的密度。
由式(1—15)可知,气体在流场中密度的变化是马赫数的函数,并和气体的性质有关.对于同一气体,马赫数越大,密度变化也就越大。例如,工业上常用的过热蒸汽的 / 0和M的关系如表1—7所示。
由表1—7可知,随着马赫数的增加,也即随着流速的增加,气体的密度将减小。
在工业测量中,若马赫数不大,则可利用式(I—15)计算得 / 0,若在允许的误差范围内 的变化可忽略,则可根据具体情况把可压缩流体视为不可压缩流体处理。
音(声)速和介质的性质以及所处的状态有关,在工程上,声速可用下式表示:
式中 X——介质的等熵指数;
R——气体常执,N·m/kg·K;
T——工作状态下介质的绝对温度,K。
在不同的气体中音速各不相同。在0℃的空气中音速为332m/s;在二氧化碳气体中,为262m/s;在同一气体中,音速随温度的升高而增加。应根据介质的性质以及工作状态下的温度由式(1—16)计算声速。常见气体的物理性质见表1—8所列。
七、雷诺数
测量管内流体流量时,往往必须了解其流动状态、流速分布等。雷诺数就是表征流体流动特性的一个重要参数.
流体流动时的惯性力Fs和粘性力(内摩擦力)Fm之比称为雷诺数。用符号Re表示。Re是一个无因次量。
式(1—17)中的动力粘度 用运功粘度V来代替,因 = ,则
式中 V——流体的平均速度;
——流束的定型尺寸;
V、 ——在工作状态下流体的运动粘度和动力粘度;
——被测流体密度。
由式(1—18)可知,雷诺数Re的大小取决于三个参数,即流体的速度、流束的定型尺寸以及工作状态下的粘度。
用圆管传输流体,计算雷诺数时,定型尺寸一般取管道直径(D),则
用方形管传输流体,管道定型尺寸取当量直径(Dd)。当量直径等于水力半径的四倍。对于任意截面形状的管道,其水力半径等于管道截面积与周长之比.所以长和宽分别为A和B的矩形管道,其当量直径 对于任意截面形状管道的当量直径,都可按截面积的四倍和截面周长之比计算。因此,雷诺数的计算公式为
雷诺数小,意味着流体流动时各质点问的粘性力占主要地位,流体各质点平行于管路内壁有规则地流动,呈层流流动状态。雷诺数大,意味着惯性力占主要地位,流体呈紊流流动状态,一般管道雷诺数ReD<2000为层流状态,ReD>4000为紊流状态,ReD=2000――4000为过渡状态。在不同的流动状态下,流体的运动规律.流速的分布等都是不同的,因而管道内流体的平均流速 ;与最大流速Vmax的比值也是不同的。因此雷诺数的大小决定了粘性流体的流动特性。图1—l表示光滑管道的雷诺数ReD与 /Vmax的关系。
试验表明,外部条件几何相似时(几何相似的管子,流体绕过几何相似的物体等),若它们的雷诺数相等,则流体流动状态也是几何相似的(流体动力学相似)。这一相似规律正是流量测量节流装置标准化的基础。可见,雷诺数确切地反映了流体的流动特性,是流量测量中常用的参数.
雷诺数的流量表达式为
M——被测介质的质量流量,kg/h;
Q――被测介质的容积流量,m3/h;
D——管道内径,mm;
——工作状态下被测介质的动力粘度,Pa·s;
v——工作状态下被测介质的运动粘度,m2/s。
式(1—21)、 (1—22)中的常数值,依式中各参数的单位不同而异。当采用非式中指定的单位时,常数值应作相应的修正。
在使用雷诺数时,应注意其对应的定型尺寸。一般在给出的雷诺数Re的右下角注以角码,表明对应的定型尺寸。在节流装置的标准中,对管道直径D而言的雷诺数记作ReD,而对节流元件孔径d而言的雷诺数记作Red,两者的关系式为ReD= Red,式中 为节流元件的直径比,即 = .使用时应注意.