引言
市场上现有的监控设备也往往不能满足用户的远程查询要求,而且误报率也比较高。基于蓝牙技术的家庭监控报警系统,能够实时监控终端探测设备的数据,并在有突发事件时及时报警;同时该系统还能满足用户随时通过控制中心来统筹管理家居的要求。
系统硬件电路结构
ROK101007蓝牙模块
ROK 101007是Ericsson公司生产的一种在电子设备中实现蓝牙功能的短距离通信模块。该蓝牙模块是由基带控制器、快闪式存储器、PBA313 01/2无线电收发器3个芯片组成。其同时支持数据和语音的传递,通过一个符合USB2.0规格的USB接口或一个UART/PCM接口来实现模块和主机控制器之间的通信。它的VCC电源典型值为3.3V。POR101 007符合蓝牙1.1规范要求,支持多操作点工作方式,通过了FCC和ETSI认可。
S3C4510B微控制器
S3C4510B是基于以太网应用系统的高性价比16/32位RISC微控制器,内含一个由ARM公司设计的16/32位ARM7TDMI RISC处理器核。该处理器支持ROM/SRAM,LFASH,DRAM和外部I/O以及
系统硬件电路
家庭监控报警系统整体是由两部分组成,包括终端探测电路部分和中心监控电路部分。系统总体结构框图如图1所示。
图1 系统组成框图
结构框图中前半部分为一个基于蓝牙模块的终端探测单元电路,主要由传感器、数模转换模块、S3C4510B单片机、报警电路及ROK101 008蓝牙模块组成;后半部分为中心控制单元电路,主要由PC机和蓝牙模块组成。
在终端探测单元,蓝牙模块和单片机之间通过串口输入HCI指令实行数据通信。当使用UART进行通信时,蓝牙模块作为一个DCE,其串行速度可达460.8Kbit/s。ROK101007蓝牙模块的UART接口符合工业标准16C450,支持多种波特率,提供四个信号TXD、RXD、RTS和CTS,均按照null modern方式连接,其中TXD和RXD用于数据流传输,RTS和CTS用于数据流控制。MAX232芯片的工作电压为5V,这就需要额外使用5个100nF的电容构成外围电路。S3C4510B微控制器和蓝牙模块的接口电路如图2所示。
图2 MCU和蓝牙模块接口电路
在中心监控单元,PC机和蓝牙模块的通信通过USB接口来实现。使用USB接口方式通信时,是将蓝牙模块当作一个USB从设备与主机通信的,通过双向端口D+和D-传输数据。对于PC机应有唤醒和分离两个边带信号来控制PC机的状态,当主机处于低功耗模式,如果蓝牙模块接收到建立连接的请求时,Wake_up引脚输出高电平,唤醒主机。主机的挂起状态可通过Detach信号来实现,当Detach输出高电平时,芯片脱离USB状态。主机与蓝牙模块的接口电路如图3所示。
图3 主机与蓝牙模块的接口电路
系统软件设计
蓝牙模块间的ACL数据通信流程主要有蓝牙模块初始化、HCI流量控制设置、查询、建立连接、进行数据通信和断开连接。初始化程序是单片机对蓝牙发送一系列HCI命令分组并判断蓝牙返回的事件分组是否正确,当蓝牙设备正确初始化完成之后,通过Set_ Host_ Controller_ To_ Host_ Flow_ Control指令打开主机控制器到主机的流量控制,并通过Host Buffer Size指令来对流量控制进行配置。之后主设备查询周围的蓝牙设备并发出建立连接指令,在成功建立ACL连接之后开始数据通信。当通信完成后,主设备和从设备都可以发出Disconnect命令断开连接。
系统终端探测电路程序流程如图4所示,软件主要是在单片机上的编程,实现数据的采集,重点是HCI-RS232传输层的通信,单片机主要基于C语言编程,实现对前端来自传感设备数据进行HCI-RS232信息格式的打包,然后通过传输层接口RS232实现和蓝牙模块之间的数据传递。
图4 系统终端探测电路程序流程
系统中心监控电路程序流程如图5所示,软件控制主要是实现蓝牙模块和PC机之间的通信,数据传输是关键部分。程序在循环中不断查询是否有蓝牙数据需要接收和是否有监控命令数据传来,需要送蓝牙发送。蓝牙数据接收采用中断接收方式,而监控命令数据采用查询接收方式,这样可以达到最高的工作效率
。图5 系统中心监控电路程序流程
结语
基于蓝牙技术的家庭监控报警系统,硬件设计简单,灵敏度高,由于蓝牙技术采用跳频模式,信息传输就更为安全准确,同时在天线发射允许的范围内蓝牙模块间信息的传输不受空间的限制。随着蓝牙技术的普及,其低成本的优势将得到体现,正是由于蓝牙的这些特点使得该系统适应性较强,在不需要做较大改动的情况下就能适用于其它类似的监控报警系统,具有较高的应用价值,可以推广应用。