技术中心
 
 

现地控制单元在水电厂自动化中的应用和发展趋势

   日期:2006-06-19     作者:管理员    
  1. 前言
  水力发电与燃煤、燃油、核能发电相比,能源是可再生的、永不枯竭的清洁能源。国家目前把优先发展水力发电作为搞好能源平衡的战略性措施,并出台了一列措施大力鼓励推进水电厂建设。在水电行业,随着水电厂"无人值班"(少人值守)和状态检修工作的不断深入开展,对水电厂的生产运行和管理提出了更高的要求;以”厂网分开、竞价上网”为基础的电力体制的改革也对水电厂自动化技术提出了新的要求。计算机技术、信息技术、网络技术、工业控制技术的飞速发展,给水电厂综合自动化系统无论在结构上还是在功能上,都提供了一个广阔的发展空间。
  70年代中期,国外水电厂就开始把先进的计算机技术应用于水力发电厂的生产过程控制,大大提高了水电厂的自动化水平,取得了良好的经济效益。70年代末,原电力部科技委主持召开了“全国水电厂自动化技术经验交流会”,制定了水电厂自动化科学技术发展7年规划,我国开始引进和国内自主研发水电厂计算机监控系统技术并取得了巨大的成功。通过多年的努力,国内自主开发的水电厂自动化技术的发展经历了摸索、试点、推广、提高这四个阶段,取得了很大的成绩。特别
是近20年来,国内水电厂自动化水平发展迅速,目前已进入世界先进行列。
  水电厂计算机监控系统通常可以分成两大部分,一是对全厂设备进行集中控制的部分,称之为厂级或厂站级监控系统;另一部分是位于水轮发电机层、开关站等设备附近的控制部分,称为现地控制系统。现地控制系统的主要组成部分就是现地控制单元LCU(Local Control Unit),在早期曾采用过与电网调度远程终端RTU(Remote Terminal Unit)同样的名称,考虑到LCU的含义更确切,自1991年“现地控制单元学术会议“之后,基本上统一称之为LCU。现在就LCU在我国水电厂自动化系统中的应用及发展作几点探讨。
  2. LCU的应用
  在水电厂计算机监控系统中LCU直接与电厂的生产过程接口,是系统中最具面向对象分布特征的控制设备。现地控制单元的控制对象主要包括以下几个部分:
  (1) 电厂发电设备,主要有水轮机、发电机、辅机、变压器等;
  (2) 开关站,主要有母线、断路器、隔离开关、接地刀闸等;
  (3) 公用设备,主要有厂用电系统、油系统、水系统、直流系统等;
  (4) 闸门,主要有进水口闸门、泄洪闸门等。
  LCU一般布置在电站生产设备附近,就地对被控对象的运行工况进行实时监视和控制,是电站计算机监控系统的较底层控制部分。原始数据在此进行采集和预处理,各种控制调节命令都通过它发出和完成控制闭环,它是整个监控系统中很重要、对可靠性要求很高的控制设备。用于水电厂的LCU按监控对象和安装的位置可分为机组LCU、公用LCU、开关站LCU等。而按照LCU本身的结构和配置来分,则可以分为单板机——线型结构的LCU、以可编程控制器(PLC)为基础的LCU、智能现地控制器等三种。第一种LCU多为水电厂自动化初期的产品,目前已基本不再在新系统中采用。另外尚有极少数的小型水电厂采用基于工业PC机(又称工控机IPC)的控制系统,下面仅讨论处于主流地位的PLC和智能现地控制器(最近几年尚有称为PCC(Programmable Computer Controller)、PAC(Programmable Automation Controller)的产品,应该也可以归类其中)。
  2.1可编程控制器(PLC)
  PLC的定义有许多种。国际电工委员会(IEC)对PLC的定义是:可编程控制器是一种数字运算操作的电子系统,专为在工业环境应用而设计的。它采用可编程序的存贮器,用于其内部存储程序,执行逻辑运算 , 顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字的、模拟的输入和输出,控制各种类型的机械或生产过程。可编程序控制器及其有关设备,都应按易于与工业控制系统形成一个整体,易于扩充其功能的原则设计。
  最初,由于美国汽车工业的需要而产生了可以说是原始的PLC。虽然PLC问世时间不算太长,但是随着微处理器的出现,大规模、超大规模集成电路制造技术和数据通讯技术的迅速发展,PLC的应用和技术也得到了飞速的发展,其发展过程大致可分三个阶段:
  (1) 早期的PLC(60年代末-70年代中期): 早期的PLC一般称为可编程逻辑控制器。
  (2) 中期的PLC(70年代中期-80年代中,后期): 在70年代开始采用微处理器作为PLC的中央处理单元(CPU)。 这样,使PLC得功能大大增强。在软件方面,在原有的逻辑运算、定时、计数等功能的基础上增加了算术运算、数据处理和数据通讯、自诊断等功能。在硬件方面,开发了模拟量模块、远程I/O模块以及各种特殊功能模块,使PL














C的应用范围得以迅速扩大到需要自动控制的很多行业。
  (3) 近期的PLC(80年代中、后期至今) 进入80年代中、后期,由于微处理器硬件制造技术迅速发展,同时市场价格大幅度下降,使得各PLC生产厂家可以采用更高档次的微处理器。为了进一步提高PLC的处理速度,很多制造厂商还研制开发了专用逻辑处理芯片。后来PLC还融入了Ethernet、Web Server等技术,提供了功能丰富的配套软件,使广大用户使用起来更加得心应手。
  上世纪80年代至90年代中期,是PLC发展最快的时期,年增长率一直保持为30%~40%。在这时期,PLC的数据采集处理能力、数字运算能力、人机接口和网络通信能力都得到大幅度提高,PLC逐渐进入过程控制领域,与部分工业控制设备相结合后在某些应用上逐渐取代了在过程控制领域处于统治地位的DCS系统。由于PLC具有通用性强、可靠性高、使用方便、编程简单、适应面广等特点,使它在工业自动化控制特别是顺序控制中的得到了非常广泛的应用。
  我国将PLC应用于水电厂生产设备的监控始于上世纪80年代,由于PLC一般按照工业使用环境的标准进行设计,可靠性高、抗干扰能力强、编程简单实用
、接插性能好很快被电站用户和系统集成商接受,得到了较好的应用。目前在我国水电厂使用较广泛的PLC有:GE Fanuc公司的GE Fanuc 90系列,德国Siemens公司的S5、S7系列,法国Schneider公司的Modicon Premium、Atrium 和Quantum,美国Rockwell公司 PLC5、Control Logix,日本OMRON公司的SU-5、SU-6、SU-8,日本MITSUBISHI公司的FX2系列等。由于各种PLC的设计原理差异较大,产品的功能、性能以及可以构成现地系统的规模有很大的不同。一般来说,根据不同电站在安全性能(包括可靠性、可维护性等)、应用功能、控制规模、系统结构等方面的实际需求进行选择,还是可以找到合适的PLC的。目前我国很大一部分电站的自动化系统都是采用PLC构成现地控制部分的,通过合理的配置和搭配,它们基本上都能在 系统中担负起相应责任,完成相应的功能。
  但PLC作为一种通用的自动化装置,并非是为水电厂自动化而专门设计的,在水电自动化这一有着特殊要求的行业应用中不可避免地也会有一些不适合的地方,现列出以下几点:
  (1) PLC以“扫描”的方式工作,不能满足事件分辨率和系统时钟同步的要求。水电厂计算机监控系统都是多机系统,为了保证事件分辨率除了PLC本身应具有一定的事件响应能力和高精度时钟外,还要求整个系统内各部分主要设备之间的时钟综合精度也必须保证在毫秒级以内。而以PLC为基础的现地控制装置如果不采取特殊措施,就无法保证水电厂安全运行对事件分辨率和系统时钟同步的要求。
  (2) 通用型PLC的起源主要针对机械加工行业,以后逐步扩展到各行各业。现在的PLC虽然具有较强的自诊断功能,但对于输入、输出部分,它只自诊断到模件级。这对于我国电力生产这样一个强调“安全第一”的行业来说,有一定的欠缺,往往需要另加特殊的安全措施。
  (3) 通用型PLC一般都具有一定的浪涌抑制能力,基本上可以适合大部分行业应用。但对于水电厂自动化系统来讲,由于设备工作环境的特殊性,通用型PLC的浪涌抑制能力与技术规范所要求的三级浪涌抑制能力还有一些差距。
  2.2 智能现地控制器
  在我国水电厂自动化系统中应用较多的另一类现地控制单元应该就是智能现地控制器,如ABB公司AC450,南瑞集团的SJ-600系列,Elin公司的SAT1703等。
  其中AC450是ABB公司生产的适用于工业环境的Advant Controller系列现地控制单元中的一种,主要应用于其它行业的DCS中。它包括了以Motorola 68040为主处理器的CPU模件和I/O、MasterBus等多种可选的模件,支持集中的I/O和分布式I/O,可根据不同的应用需求采用不同的模件来构成适用的现地子系统。
  SAT1703是奥地利Elin公司生产的多处理器系统,它包括3个装有不同接口处理器的子系统AK1703、AME1703和AM1703。每个子系统由主处理器、接口模板(模块)、通信模块等构成,能实现数据处理、控制和通信功能,在LCU内部采用SMI(Serial Module Interconnector)进行通信。SAT1703现地控制单元采用OS/2操作系统,运行的控制软件为ToolBox。
  SJ-600系列是国电自动化研究院上世纪九十年代末为在恶劣工业环境下运行而生产的国产智能分布式现地控制单元,由主控模件、智能I/O模件、电源模件以及连接各模件与主控模件的现场总线网组成。已在全国数十个大中型水电厂可











靠地运行。SJ-600具有以下主要特点:
  (1) 其中,主控模件采用符合IEEE1996.1的嵌入式模块标准PC104,具有可靠性高、现场环境适应性强等特点。使用低功耗嵌入式CPU,可选CPU型号从486至Pentium系列。
  (2) 32位智能I/O模件。所有模件采用32位嵌入式CPU,该CPU专门为嵌入式控制而设计,软件上采用板级实时操作系统和统一的程序代码,只是按模件的不同而运行相应的任务。采用了大规模可编程逻辑芯片(EPLD)及Flash存储器,简化了系统设计,提高了可靠性。智能化的I/O模件除了可独立完成数据采集和预处理,还具备很强的自诊断功能,提供了可靠的控制安全性和方便的故障定位能力。
  (3) 具有现场总线网络的体系结构,系统采用两层网络结构,第一层是厂级控制网,连接LCU和厂级计算机,构成分布式计算机监控系统;第二层是I/O总线网络,连接主控模件和智能I/O模件(现地或远程),构成分布式现地控制子系统。所有I/O模件均配备两个现场总线网络接口,这些模件都可以分散布置,形成高可靠性的分布式冗余系统。
  (4) LCU直接连接高速网。网络已成为计算机监控系统中的重要
部分,它涉及到电站控制策略和运行方式。以前现地控制器多是使用专用网络与上位机系统进行连接,而不是符合开放性标准的网络。如AC450采用MB300网络与上位机系统连接,而与采用TCP/IP协议的系统连接只能通过专用模件以VIP的方式进行受限制的数据传输。
  (5) 提供了直接的GPS同步时钟接口,无需编程和设置。GPS对时可直达模件级,满足了对时钟有特殊要求的场合,如SOE等。
  (6) 提供基于IEC61131-3标准的控制语言,在保留了梯形图、结构文本、指令表等编程语言的基础上,开发了采用“所见即所得”技术设计的可视化流程图编程语言。支持控制流程的在线调试和回放,非常适合复杂的控制流程的生成和维护。
  (7) 针对水电厂自动化专业应用开发的专用功能模块。
  3. LCU的发展趋势
    在全球计算机工业控制领域围绕着计算机和控制系统硬件/软件、网络技术、通信技术、自动控制技术等方面都在迅速地发展,同时,我国水电自动化领域的技术也不断取得长足的发展。随着全国水电厂”无人值班”(少人值守)工作的推进,以及多个单机容量700MW的特大型水电厂的建设,要求水电厂自动化系统及其自动控制装置应具备高度可靠性、自治性、开放性,发展成为一个集计算机、控制、通信、网络、电力电子等新技术为一体的综合系统,LCU应具备完备可靠的硬件结构,开放的软硬件平台和强大的应用系统。完成对电厂生产设备有效的安全监控和经济运行。
  PLC和智能现地控制器都在朝着适应新的应用需求的方向发展,如PLC根据传统PLC的不足,开发新的功能模件或者结合PLC技术和IPC技术开发出相当于智能现地控制器的新产品。Schneider公司开发了ERT模件,GE公司融入了第三方的产品以满足水电自动化对SOE的要求,GE Fanuc 2003年推出了新产品PACSystem,分别为90-70的升级产品RX7i和90-30的升级产品RX3i两个系列。与以前的GE PLC相比,最主要的是CPU部分彻底更换了。RX7i系列仍然采用VME64总线机架方式安装,CPU采用Intel PIII-700处理器,集成2个10/100M自适应以太网卡,不需要另配以太网模件。主机架采用新型17槽VME机架,而扩展机架、I/O模块、Genius网络仍采用原90-70产品。从而使其在兼容以前产品的同时,性能得到了很大地提高。可以看出自动化设备生产商都在不断努力开发新的产品,但有些改进并不是针对水电自动化这个有一定特殊性的行业的,对水电自动化来说重要的几点是:
  (1) CPU模件宜采用符合IEEE1996.1的嵌入式模块标准的低功耗CPU,或符合工业环境使用的通用型低功耗CPU。运行实时多任务的操作系统,以利于提高现地控制单元对实时事件的即时响应和处理能力,方便增加、集成水电行业的专用模块和特殊需求的功能。传统的PLC由于受其运行模式的限制,在测点数量大量增加、逻辑任务处理量或任务数增加的时候,会对运行处理周期产生较大影响;对现场的实时事件的响应也不够即时。这对实现大容量特别是单机容量700MW的大型水轮发电机组的高质量现地实时监控有着一定的欠缺。
  (2) 采用智能化的I/O模件,它除了可独立完成数据采集和预处理,方便分散布置,还可具备很强的自诊断功能,提供了可靠的控制安全性和方便的故障定位能力。
  (3) 标准化的网络连接,这里包括现场总线网和常用的以太网。LCU往往通过现场总线(常用的有CAN、ProfiBus-DP等)向下连接着各种












智能仪表、智能传感器和分级监控的子系统(如大型机组的温度、水系统等),通过高速网络(TCP/IP、工业以太网)连接厂级计算机监控系统。所以LCU必须遵循严格的国际开放标准(如IEC 61158等),对这两种网络提供有效的支持,提高现场不同厂家设备的组网能力、方便性和可维护性。
  (4) 提供对SOE既方便又有良好性价比的支持,提高现场事件信号分辨率,以满足水电厂“无人值班"(少人值守)管理模式下对故障的产生原因进行准确分析的需求。目前大部分传统PLC对此需求还有所欠缺。
  (5)提高控制安全性,应在LCU软硬件故障或异常的任何情况下,都不会有错误的控制信号输出。否则,就会造成电厂生产设备损坏,甚至会造成电力系统事故。这是至关重要的一点,一般LCU对此尚无足够的重视。
  (6) 网络安全性,随着对通过Ethernet进行数据交换的需求日益提高,很多LCU厂家已经提供或正在开发LCU的Ethernet模件或者在LCU中内嵌Ethernet功能和Web服务。无论外挂或内嵌式的Ethernet功能和Web支持都为应用提供了极大的便利,但是在用户得到应用便利的同时也受到网络安全的极
大危险。攻击、入侵、病毒等都可能对控制系统造成致命的危害,所以,必须按照国家相关部委关于“电力二次系统安全防护“的规定认真执行。
  (7) 提高可靠性和可用性,由于水电厂的特殊应用环境,要求LCU应具有很强的抗电磁干扰能力、抗浪涌能力和一定的抗振动能力。可以按要求组成冗余的热备系统,确保在监控系统中,无论是不相同的单部件故障还是主机和备机的切换都不会对控制造成影响。部分厂家的LCU还无法满足这些要求或指标太低。
  (8) 提高易用性,这也是用户考虑的一个重要方面。南瑞自控公司的SJ-600提供了功能强大的可视化交换式组态工具软件MBPro,可以帮助用户方便的进行生产控制应用的生成、调试和维护。Schneider公司的也提供了支持Modicon Premium、Atrium 和Quantum PLC系列产品完全重新设计的自动化软件Unity。其他LCU厂家也提供了或正在开发不同功能的非常有用工具软件,用户在使用LCU方面将越来越方便。
  现在我们可以确信的是,在各LCU生产厂家全面透彻地理解我国水电自动化领域对LCU的真正需求以后,都会认真的进行新产品开发。无论PLC、智能现地控制器,还是PCC、PAC尽管它们在硬件结构、系统构成、工作原理、系统软件、应用功能等方面都存在大大小小的差异,它们都可能在广泛的水电自动化应用中找到不同的定位(如一些LCU可以在要求比较低的小水电中得到应用)。但是,要在大型、超大型电站得到很好的应用,则必须结合计算机技术、工业控制技术、通信技术、工业网络技术等方面的发展,不断进行LCU软硬件的技术更新。在未来几年内,对标准化、安全性、可靠性、开放性、可互操作性、可移植性的要求将是水电用户至为关心的自动化产品的重要特征。我们相信自动化产品生产商在最近几年将会推出更多适合各领域个性化应用的控制器及新的功能,以满足不同用户广泛和不断增长的需求。

文章编号:060603
  发送短信“ 文章编号+ 评语代码” 至13816124995,告诉我们您对此文的意见。
  1- 很好,有很高的参考价值
  2- 一般,有一定的参考价值
  3- 不好,没有参考价值











 
  
  
  
  
 
更多>同类技术
 
全年征稿 / 资讯合作
 
推荐图文
推荐技术
可能喜欢