引 言
针对地下水资源已经严重透支,水资源受到严重破坏的问题设计本系统,目的就是为了监控农用机井的用水情况。农用机井分布站点广,站点之间距离几十m到一两百km,采用人工抄表监控会浪费大量的人力和物力,而且实时性差。以前采用GSM方式也存在实时性差、控制困难的问题。
目前,对此类问题可靠的、现实的解决方案就是,将现场设备接入Internet上的服务器,在上层实现实时监控、管理;但是现场没有专门Internet接入点和设备。采用GPRS接入Internet进行远程数据传输,是近两年企业、研究所等科研机构的热门课题。随着GPRS技术的日益成熟,GPRS已经成功地应用在远程抄表、夜灯照明、油田监测、自动测量、智能仪表等不方便甚至根本不可能人工操作的远程数据传输系统中。因此,本系统选用GPRS和GSM混合工作模式:在网络状况通畅的情况使用GPRS工作模式;反之可以切换到GSM工作模式。每个站点数据传输终端定时登陆到GPRS,接入Internet上的主机服务器,把采集数据和站点状态下载到服务器硬盘上;上层采用B/S浏览器方式供地级、区级、市级等不同级别设置权限浏览;同时可以随时监控站点的实时状态,报告实时现场状况,调用系统历史数据信息。
市场的机遇和应用技术的成熟常常是一对矛盾,尤其对于GPRS这类新技术,通常不得不一边开拓市场一边完善技术。然而实践是检验真理的唯一标准。系统交接使用之后,用户反馈一些改善功能的意见,另外,长时间使用之后,终端程序隐藏的“bug”也可能会随之浮出水面。这就需要对数据传输终端的程序进行升级,但是设想一下,假如投入使用了200个站点,就算用ISP现场在线编程,工作人员得到每个站点把程序更新一遍。不但浪费大量的人力、物力,而且直接贻误了开辟市场的时机,对企业造成的后果可能是致命的。
本设计方案就是应用在此类GPRS远程监控系统上,融合GPRS网络通信技术解决数据传输终端程序升级问题的。
1 IAP功能简介与系统应用
IAP(In-Application Programming)是应用在Flash程序存储器的一种编程模式。简单地说就是在应用程序控制下,对程序某段存储空间进行读取、擦除、写入操作。与ISP(In-System-Programming)操作非常相似,都不需要从电路板上取下芯片用编程器烧写再安装上去运行新程序,即具有在线编程功能。但是它们有其不同点:ISP通常是整片擦除、编程,在手工操作下通过PC串口下载程序到Flash,需要简单的硬件资源——串口RX、TX和RS232驱动芯片;而IAP却是在某段程序的控制下对另外一段程序Flash进行读写操作,可以控制对某段、某页甚至某个字节的读写操作。
根据IAP的功能特点,可以制作仿真软件替代仿真器功能。在PC上做个简单的界面应用程序就可以直接实现用户程序在线仿真:设置断点、单步运行、改变运行结果调试等功能。同理,根据ISP的功能特点可以替代编程器。本系统就是把IAP模式融入到GPRS通信系统中,用GPRS远程升级指定目标芯片的软件。
2 IAP功能系统架构
IAP功能系统架构如图1所示。
图1 系统架构(只标示与lAP功能相关部分)P89LPC936是PhiIips公司推出的一款高稳定性、多功能的51内核MCU;集成了I2C总线,读写操作I2C器件FM24C256速度快、稳定性高;增强型UART,具有帧错误检测、帧间隔检测、可选双缓冲、接收和发送中断可选分开等强大串口通信功能,增强了和GPRS模块串口通信的可靠性;内置AD/DA转换器;16 KB Flash存取器,支持ISP和IAP;采用TSSOP28或HWQFN28低成本封装。设计系统的外围电路可以减少到最少,不但提高了系统的性能,甚至可以IAP升级终端部分功能而不用改变外围硬件电路。
FM24C256,256 Kb的FRAM(铁电存储器),兼有ROM的掉电数据保存特性和RAM的读写速度和次数,读写次数达到1000亿次,采用I2C总线读写操作,使用稳定可靠;用8脚SOIC封装,与MCU的接口电路简单、通信可靠。通信速率O~400 kHz可调。P89LP(2936的12SCLH和。12SCLL两个SFR的值就是确定串行时钟发生器占空比。本系统选择7.372 8 MHz晶振,12SCLH=12SCLL=75,12C速率为25 Kbps。
GPRS模块使用WAVECOM公司生产的Q2406B,双频GPRS/GSM模块(EGSM900/1 800 MHz或EGSM900/1 900 MHz),内置TCP/IP,与标准AT指令完全兼容;其设计开发符合ETSI GSM Phase 2+标准。本系统模块使用9.6 kbps波特率,而模块出厂波特率为115 200 bps,用串口终端初始化模块时,特别要注意这一点。
3 IAP功能的软件编程
3.1 系统工作状态分析
①用户程序工作状态,在远程数据传输系统中,用户程序完成数据采集、存储、发送,系统监控、报警,接收执行上位机设置、控制命令等正常用户功能。
②IAP工作状态,如图2所示。上位机发送升级程序信令,数传终端收到并回复确认信息后,开始等待下载信令;收到正确下载信令后开始下载代码到FM24C2256暂存。按帧顺序号发送、接收数据,校验帧的正确性,采用握手数据流保证每帧完全正确接收、存储。代码发送完毕后,发送下载完毕信令,包括代码总长度和块校验码;每阶段都采取延时处理:延时时间到继续重发过程三次,还没收到就报告出错信息,强行下线,切换到待升级用户程序运行。如果通信正常,就进入最关键一步——Flash擦除和编程。
Philips在P89LPC936地址FF00H~FFFFH的空间里固化一个256字节的引导ROM,所有MCU对内部Flash的操作都可以调用这个子程序完成。使用IAP功能时就是提供这个子程序的入口参数(参考Philips的数据手册),然后调用程序的入口地址FF00H,就可以实现读、写、擦除Flash。擦除、编程Flash时需要关闭所有中断,不能对同一块Flash同时进行擦除和编程,而且编程之前要先把扇区清除。对Flash的扇区进行擦除操作的程序清单(入口参数A、R7、R4和R5,返回参数(F0(C)、R7)如下:
ERASE_FLASH:
MOV A,#04H ;A为操作类型(A=04H,告诉IAP
;执行的是擦除操作)
MOV R7,#01H ;R7删除操作方式(00H表示删除
;页;01H表示删除扇区)
MOV R4,#HIGH ;操作的Flash地址高8位
M0v R5,#L0w ;操作的Flash地址低8位
LCALL FF00H
JC ERASE_FLASH ;FO(C):O表示擦除成功,1表示
;擦除失败
3.2 IAP功能系统SFR配置
(1)用户保密扇区设置
MOV SEC6,#04H;禁止对Flash扇区6的擦除
MOV SEC7,#04H;禁止对Flash扇区7的擦除
扇区6和扇区7代码是控制擦除、编程Flash。为保证不被误操作,只允许在出厂时用专门的编程器擦写。
(2)IAP特许关键值设置
执行擦除或写Flash的IAP功能,需要在调用IAP功能程序前,把96H写入RAM单元FFH来设置特许关键值。程序代码如下:
MOV RO,#OFFH
MOV @RO,#96H
IAP程序处理完功能调用后,特许关键值被清除。因此在每次调用IAP功能程序前必须设置特许关键值。
3.3 lAP功能实现流程
IAP功能实现流程如图3、图4所示。flagIAP为下载程序完毕,并且校验码确认后,准备擦写Flash的标志。在FM24C256开辟单元存储功能很重要:在程序擦写发生异常,如掉电复位,可以在程序启动后,与上位机确认擦写后,继续完成升级任务。每次编程的字节数和上位机传输的1帧数据中,代码字节数保持一致,帧序号数表示程序分成多少帧传输和多少次编程操作。