317 自相关函数和互相关函数
自相关函数可描述具有重复组织结果的图像的组织结构单元的形状和大小。当自相关函数出现大值时,表明有最大的相关性。结合考虑组织结构,计算织物循环单元。这在选择窗口尺寸时非常有用。不同图像的互相关函数,可以比较其相似或匹配程度在利用模板寻找相似图像中是一种很有用的工具。互相关函数值越大,表明相似程度越大。
318 平滑处理
图像平滑实际上是去除灰度图像中个别灰度变化剧烈的像素即去除尖锐的噪声,使灰度图像与实际物体的灰度变化相符,便于观察。
319 锐化处理( 峰化处理)
锐化处理可以使图像中的边缘突出,采用微分或梯度处理,在灰度变化率最大的位置加强其灰度值使其轮廓边缘突出,让高频分量抬高,而低频量受到一定抑制,使图像轮廓更清晰。
3110 小波分析
小波分析是一种新近发展起来的先进处理技术,由于小波变换是时间和频率的局域变换,因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析,因而小波变换被誉为“数学显微镜”。小波分析对于非平稳信号的处理非常有效,使得图像的边缘更加清晰和突出,利用多尺度边缘检测在不同尺度上对信号进行平滑并求导,然后由一阶导数的局部模极大值点或二阶导数的过零点确定信号的边缘点。小波分析能同时利用信号与噪波在时域和频域内的差别,实现更为有效的信噪分离,从而获得更为理想的降噪效果。小波变换的除噪的原理是把带有噪波的测量信号进行小波分解,由于信号与测量噪波在小波变换下的行为各不相同,二者可以被分离出来,把那些属于测量噪波的小波系数置为1 ,剩余的部分进行小波重构得到没有噪声的信号。与常用的检测方法相比,小波变换可以把信号分解成基本建筑块,在时域和频域都便于定位,可以有效地表征信号的局部奇异性,同时对于较小结构的轮廓和较大结构的边界可以进一步地以变尺度小波分析精确地检测出来。而且使用小波分析法也大大地提高了运算速度。小波在纺织中的应用参见文献[4 ] 。
4 机器视觉在纺织检测中的应用
视觉的最大优点是与被观测的对象无接触,因此对观测与被观测者都不会产生任何损伤,十分安全可靠,这是其它感觉方式无法比拟的。另外,视觉方式所能检测的对象十分广泛,可以说是对对象不加选择。理论上,人眼观察不到的范围机器视觉也可以观察,例如红外线、微波、超声波等人类就观察
不到,而机器视觉则可以利用这方面的传感器件形成红外线、微波、超声波等图像。因此可以说是扩展了人类的视觉范围。另外,人无法长时间地观察对
象,机器视觉则不知疲劳,始终如一地观测,所以机器视觉可以广泛地用于长时间恶劣的工作环境。
在纺织企业中视觉检测是质量控制的主要组成部分,传统的检测是通过人来完成的,因此,效率和质量都不高,用机器视觉代替人的视觉可以克服人工检测所造成的各种误差,大大提高了检测精度和效率。正是由于视觉系统的高效率和非接触性,机器视觉在纺织检测中的应用越来越广泛[5~7 ] ,在许
多方面已取得了成效。由于智能机器人和其它应用领域对实时处理的
迫切需要,用于机器视觉处理的专用硬件已出现。例如:1) 专业并行处理计算机,它可以进行阵列处理、流水线处理和多重处理;2) 用于照相机测距的大规模集成电路芯片;3) 以视频速度完成二维DCG函数滤波的卷积器;4) 实时实用立体视觉匹配器;5) 目前已出现了在同一集成电路芯片上完成光信号敏感、模P数信号转换和初级视觉信息处理的功能组件;6) 以芯片为基础构成能跟踪物体三维运动的组件。
[img]20057268525424430.jpg[/img]
机器视觉用可于检测与纺织材料表面有关的性能指标(见表3) 。目前主要的研究内容可分为三大类:纤维、纱线、织物。由于织物疵点检测(在线检测) 需要很快的计算速度,因此,设备费用比较昂贵,目前在线检测的应用比较少,主要应用是离线检测(如表3) ,主要的检测有纺织布料识别与质量评定、
织物表面绒毛鉴定、织物的反射特性、合成纱线横截面分析、纱线结构分析等。此外还可用于织物组织设计、花型纹板、棉粒检测、分析纱线表面摩擦。
[img]20057268533787883.jpg[/img]
参考文献
1 Zurada J . M. . Introduction Artificial Neural Network Systems. San
Francisco :West Publishing Company ,1992 :2~16.
2 Mandelbrot . The Fractal Geometry of Nature. San Francisco : Freeman ,
1982 :2~18.
3 Chui C. K. . An Introduction to Wavelets. Academic Press ,Ins. ,1992 :2
~6.
4 Hu and I. S. Tsan. Fabric Inspection Based on Best Wavelet . Textile
Research Journal ,2000 (8) :662~670.
5 Applying Expert System and FuzzyLogic to an Intellect Diagnosis System
for Fabric Inspect . Textile Research Journal ,1995(12) :697~709.
6 Tsai I. S. et al . Automatic Inspection of Fabric Defects Using and
Artificial Neural Network Technique. Textile Research Journal , 1996
(7) :474~482.
7 Tsai I. S. et al . Applying an Artifical Neural Network to Pattern
Recognition in Fabric Defects. Textile Research Journal ,1995 (3) :123
~130.