基于三菱产品的海况实时分布式仿真系统的研制
----李玉华 吴箫 华中科技大学计算机科学与工程学院 湖北武汉 430074
摘要:本文详尽介绍了利用菱电公司的经济大型AnSH PLC以及经济紧凑型FX2N PLC及其相应的出功能模块、FR-540变频器,并采用传输速率较高、可靠性好的现场总线CC-Link,架构了一套实时性较强、可靠性良好的海况实时分布式仿真系统。该系统的研制为海洋船舶研制提供了一种实用型的半实物仿真平台,节省了大量的试验测试经费,降低了试验所需的物力和人力,同时在一定程度上,还可以进行海洋能量开发的仿真试验,填补了行业空白。
关键词:PLC 半实物仿真 CC-Link
1.设计背景
船舶在海洋中的摇摆姿态、船体的抗风浪性能对船舶的航行的稳定性、安全性具有巨大的意义。船体在海洋中的不同运动姿态:横倾、纵倾、上下代表不同的海况等级,船舶的适航等级适海洋船舶的一个重要指标。因此,在设计船舶时,尤其是远洋船舶、海洋船舶的设计,必须要经过科学计算其船体的抗风浪等级。但计算仅仅是理论值,必须要经过多次的海风浪试验加以修正。这样的试验不仅费时、费力,还浪费了大量的财力。有些单位为了减少开支,将海风浪试验降低到最低的次数,不仅影响了测试数据的完整性,而且有些数据不一定完整。为了避免这种现象发生,使远洋和海洋船舶设计的更为科学、省时、省力、省经费,我们利用了菱电自动化的大型实用型PLC AnSH以及经济紧凑型FX2NPLC,FR-E540变频器,并采用CC-Link现场总线,开发了一套长50米、宽30米、深6米的水池造波系统,可以模拟实时海况的风浪,实现了船舶设计的半实物仿真系统平台,不仅可以提供给船舶设计单位以及船舶认证单位进行半实物的实时仿真试验,为船舶设计提供接近实际海况的测试现场数据,还可以为海洋开发单元进行波能发电装置的开发研究。这样的半实物分布式仿真平台系统在国外90年代就已成型,在我国船舶设计单位目前正在展开试制工作。
系统组成与设计
2.1 系统组成
为了实时模拟海况的风浪,水流、浪程和浪高等,本造波系统有如下分系统组成
1)造波分系统:水池配有三套双推板大功率的造波机和小功率的造波机,大、小造波机不同的组合能产生纵向传播的长峰波,最大波高可达0.3米,由计算机进行程序控制,可以产生模型试验所需要的规则波或不规则波。
2)造流系统:水池配有一套高压喷水造流系统,在池墙两侧均匀密布喷水管,水泵从粗管吸水加压后从密布的喷水管中喷出,在水池中造成均匀的水流。该系统能产生纵向流和横向流,最大流速为0.1米/秒。此外,还配置了局部造流系统,以适应高速水流以及不同流向试验的需要。
3)造风系统:配置一套可移动式鼓风机造风系统。最大风速可达5米/秒,通过计算机控制系统可进行风谱的模拟。
4)拖车系统:在拖曳试验时可以进行迎浪、顺浪和横浪的拖曳试验,也可对x、y方向调节进行斜浪的拖曳试验。
5)水池过滤系统:水池配有机械过滤系统。
6)消波系统:在造波机对岸设有一定倾斜度的格栅式消波滩,借以吸收波能防止产生反射波。
2.2 系统设计
为了实现上述功能,系统采用分层、分单元的概念,将系统实现真正的分布式控制。其中,造波分系统、造流分系统以及造风分系统分别可由两台PLC控制,海况的波浪有大海浪、小海浪、纹波海浪,为了真实模拟海况的特性,高头较大的海浪由AnS PLC控制,小海浪、纹波海浪由FX2N PLC控制。造流分系统与之类似。只有这样,才能模拟海况中的两个大浪潮中含有许多的小高头的浪潮。浪潮产生的过程为:由PLC的模拟输出功能模块输出0~10V的控制信号控制FR-E540型变频器的输出频率,变频器实时控制三相异步电机的转速,电机带动造波器的浆液片打击水面,电机的转速不同,造成两个波头之间的波程和波峰的不同,这样,三相异步电机不同的转速与不同的波头、波程、波峰相对应,因此,两个三相异步电机不同的转速组合便可实时再现模拟不同的海况。造流系统同样由AnSH PLC和FX2N PLC组合控制各自的动力水泵,形成不同的水流能量。造风系统由AnSH PLC控制大功率的风机实现。
为了提高可靠性,本控制系统中还设计了手动备用调速系统,以保证在计算机故障时不影响造波。当计算机故障时,切换装置不需人工干预,自行切换到手动备用调速系统,操作人员可以通过电位器调节变频器转速来维持正常的造波过程。三个由AnSH PLC、FX2N PLC以及FR-E540变频器和三相异步电机组成的三个现地控制单元和由PC组成的服务器、人机交互服务器架构的系统配置见图1所示。AnSH PLC、FX2N PLC配置图见图2、图3所示。
关键词:PLC 半实物仿真 CC-Link
1.设计背景
船舶在海洋中的摇摆姿态、船体的抗风浪性能对船舶的航行的稳定性、安全性具有巨大的意义。船体在海洋中的不同运动姿态:横倾、纵倾、上下代表不同的海况等级,船舶的适航等级适海洋船舶的一个重要指标。因此,在设计船舶时,尤其是远洋船舶、海洋船舶的设计,必须要经过科学计算其船体的抗风浪等级。但计算仅仅是理论值,必须要经过多次的海风浪试验加以修正。这样的试验不仅费时、费力,还浪费了大量的财力。有些单位为了减少开支,将海风浪试验降低到最低的次数,不仅影响了测试数据的完整性,而且有些数据不一定完整。为了避免这种现象发生,使远洋和海洋船舶设计的更为科学、省时、省力、省经费,我们利用了菱电自动化的大型实用型PLC AnSH以及经济紧凑型FX2NPLC,FR-E540变频器,并采用CC-Link现场总线,开发了一套长50米、宽30米、深6米的水池造波系统,可以模拟实时海况的风浪,实现了船舶设计的半实物仿真系统平台,不仅可以提供给船舶设计单位以及船舶认证单位进行半实物的实时仿真试验,为船舶设计提供接近实际海况的测试现场数据,还可以为海洋开发单元进行波能发电装置的开发研究。这样的半实物分布式仿真平台系统在国外90年代就已成型,在我国船舶设计单位目前正在展开试制工作。
系统组成与设计
2.1 系统组成
为了实时模拟海况的风浪,水流、浪程和浪高等,本造波系统有如下分系统组成
1)造波分系统:水池配有三套双推板大功率的造波机和小功率的造波机,大、小造波机不同的组合能产生纵向传播的长峰波,最大波高可达0.3米,由计算机进行程序控制,可以产生模型试验所需要的规则波或不规则波。
2)造流系统:水池配有一套高压喷水造流系统,在池墙两侧均匀密布喷水管,水泵从粗管吸水加压后从密布的喷水管中喷出,在水池中造成均匀的水流。该系统能产生纵向流和横向流,最大流速为0.1米/秒。此外,还配置了局部造流系统,以适应高速水流以及不同流向试验的需要。
3)造风系统:配置一套可移动式鼓风机造风系统。最大风速可达5米/秒,通过计算机控制系统可进行风谱的模拟。
4)拖车系统:在拖曳试验时可以进行迎浪、顺浪和横浪的拖曳试验,也可对x、y方向调节进行斜浪的拖曳试验。
5)水池过滤系统:水池配有机械过滤系统。
6)消波系统:在造波机对岸设有一定倾斜度的格栅式消波滩,借以吸收波能防止产生反射波。
2.2 系统设计
为了实现上述功能,系统采用分层、分单元的概念,将系统实现真正的分布式控制。其中,造波分系统、造流分系统以及造风分系统分别可由两台PLC控制,海况的波浪有大海浪、小海浪、纹波海浪,为了真实模拟海况的特性,高头较大的海浪由AnS PLC控制,小海浪、纹波海浪由FX2N PLC控制。造流分系统与之类似。只有这样,才能模拟海况中的两个大浪潮中含有许多的小高头的浪潮。浪潮产生的过程为:由PLC的模拟输出功能模块输出0~10V的控制信号控制FR-E540型变频器的输出频率,变频器实时控制三相异步电机的转速,电机带动造波器的浆液片打击水面,电机的转速不同,造成两个波头之间的波程和波峰的不同,这样,三相异步电机不同的转速与不同的波头、波程、波峰相对应,因此,两个三相异步电机不同的转速组合便可实时再现模拟不同的海况。造流系统同样由AnSH PLC和FX2N PLC组合控制各自的动力水泵,形成不同的水流能量。造风系统由AnSH PLC控制大功率的风机实现。
为了提高可靠性,本控制系统中还设计了手动备用调速系统,以保证在计算机故障时不影响造波。当计算机故障时,切换装置不需人工干预,自行切换到手动备用调速系统,操作人员可以通过电位器调节变频器转速来维持正常的造波过程。三个由AnSH PLC、FX2N PLC以及FR-E540变频器和三相异步电机组成的三个现地控制单元和由PC组成的服务器、人机交互服务器架构的系统配置见图1所示。AnSH PLC、FX2N PLC配置图见图2、图3所示。
图1:仿真平台架构图
2.2.1 AnSH PLC特性及配置
A1SJHCPU是AnSH系列中最经济的CPU经的CPU组件。A1SJHCPU的独特之处在于它的CPU,电源和基板集为一体,从而显著地降低了制造的成本。AnSH采用了三菱专为顺序控制和数学运算而开发的“三菱顺控处理器芯片”(MSP)。AnSH不但速度比AnS快,而且增加了CC-Link的专用指令,原先的指令仍然得到保留(包括PID运算,浮点运算和三角函数等)。同时内置的性能诸如锂电池、后备RAM、用户存储器、实时时钟和一个灵活的通信口,使AnS系列能适应极广泛的应用场合。其特殊功能组件的完整,使AnSH可完美的适用于过程控制、定位控制和其它各种类型的控制。与同类产品相比,价比较高,这正是我们选用AnSH的理由。其中:
A1SJHCPU是AnSH系列中最经济的CPU经的CPU组件。A1SJHCPU的独特之处在于它的CPU,电源和基板集为一体,从而显著地降低了制造的成本。AnSH采用了三菱专为顺序控制和数学运算而开发的“三菱顺控处理器芯片”(MSP)。AnSH不但速度比AnS快,而且增加了CC-Link的专用指令,原先的指令仍然得到保留(包括PID运算,浮点运算和三角函数等)。同时内置的性能诸如锂电池、后备RAM、用户存储器、实时时钟和一个灵活的通信口,使AnS系列能适应极广泛的应用场合。其特殊功能组件的完整,使AnSH可完美的适用于过程控制、定位控制和其它各种类型的控制。与同类产品相比,价比较高,这正是我们选用AnSH的理由。其中:
图2:AnSH PLC配置
1)A1SH42数字输入/输出模块:主要控制一些控制继电器、接触器的开闭状态、与继电器配合控制电机和变频器的电源的开闭状态。
2)A1SJ61BT11 CC-Link现场总线通信适配器:主要用于与系统服务器中的CC-Link主控模块通信,实时传递AnSH PLC监测各量的状态与参数、同时接收服务器传来的控制指令。
3)A1S66ADA模拟输入/输出模块:实时监测水池的水压变化趋势(反应了海况的级别),给FR-E540变频器提供模拟控制量,使变频器的输出频率变化,达到控制三相异步电机转速的目的,从而控制、模拟海况的风浪和浪高、浪程。
4)A1SD62D高速计数模块:实时监测三相异步电机的转速,以便A1S66ADA模块对电机的转速进行PID调节。
2.2.2 FX2N PLC特性与配置
FX2N系列是PLC FX家族中最先进的系列,它最大范围的包容了标准特点、程序执行更快、全面补充了通信功能、适合世界各国不同的电源以及满足单个需要的大量特殊功能模块,可以为工厂自动化应用提供最大的灵活性和控制能力。因FX2N PLC具有良好的性价比,它不但具有硬件上较好的配置性能和功能性能,还有丰富的软件功能指令集,是目前小型PLC中的优秀代表,同时它拥有无以匹及的速度、高级的功能、逻辑选件以及定位控制等特点,FX2N是从16到256路输入/输出的多种应用的选择方案。其灵活的配置、高速运算、突出的寄存器容量、丰富的元件资源、尤其适合小点数的过程控制。其中:
图3:FX2N PLC配置
1)FX2N-64MT-D主控模块:其数字输入/输出模块控制一些控制继电器、接触器的开闭状态、与继电器配合控制电机和变频器的电源的开闭状态。
2)FX2N -32CCL CC-Link现场总线通信适配器:主要用于与系统服务器中的CC-Link主控模块通信,实时传递FX2N-64MT监测各量的状态与参数、同时接收服务器传来的控制指令。
3)FX2N -4AD模拟输入模块:实时监测水池的水压变化趋势(反应了海况的级别);
4)FX2N -2DA模拟输出模块:给FR-E540变频器提供模拟控制量,使变频器的输出频率变化,达到控制三相异步电机转速的目的,从而控制、模拟海况的风浪和浪高、浪程。
5)FX2N -1HC高速计数模块:实时监测三相异步电机的转速,以便FX2N -2DA模块对电机的转速进行PID调节。
2.2.3 服务器配置
CC-Link为主从模式,因此,在中控室内的主控服务器内必须插放一块主模式的CC-Link通信适配卡:A80BD-J61BT11。为提高其控制的实时性,通信速率选用了2 .5M,操作系统选用Windows NT4.0+SP4。系统的编程开发环境为Visual C++ Ver6.0。并安装有SQL Server V7.0,用于人机交互、CC—Link网络组态、实时数