勃利化肥厂 李世斌东北轻合金有限公司 李宏伟
摘 要:基于西门子S7-400系列PLC构成了一种新型的锅炉自动控制系统,讨论了控制系统的功能和特点,给出了控制系统的硬件组成和控制框图。实际使用证明,该控制系统具有优良的控制效果和极高的可靠性。
关键词:PLC锅炉可靠性
1引言
可编程序控制器(Programmable logic contoroller)简称PLC,是以微处理器为核心,用于工业控制的计算机,由于PLC广泛采用微机技术,使得PLC不仅具有逻辑控制功能,而且还具有了运算、数据处理和数据传送等功能。目前城市供暖的锅炉在启停和运行的过程中都需要精确的实时控制,大多数锅炉系统的控制还采用继电器逻辑控制。这类系统自动化程序很低,大部分操作还是由手动来完成,只能处理一些开关量问题,无法处理系统的模拟量,即使控制一些开关量,其电气线路复杂,可靠性不高,不便维护,实际锅炉系统控制中每台炉就需要一套继电器控制系统,而采用西门子S7-400系列可编程控制器设计的控制系统实现了在大庆采油十厂油改煤工程中使三台20T水炉的系统自动控制,并且实现了整个系统的优化控制。
2系统硬件构成
上位计算机系统硬件部分采用siemens触摸屏式工控机,上位监控组态软件采用siemens公司wincc进行组态。热源部分的控制系统采用siemens公司的大型双冗余PLC可编程控制器S7-400H通过双冗余光纤环网以100MBPS的速率与上位工控机相连利用TCP/IP网络通过组件实现数据共享和分布式数据库,锅炉房各模块及水处理间控制模块间通过ProfiBus现场总线相连,水处理间配以可操作的siemens的触摸屏。热力站的数据采集系统采用siemens公司的S7-300系列PLC,通过MODEM市话拨号的方式以9600BPS的速率与控制中心相连,热力站数据通过siemens触摸屏,可在热力站当前显示,系统硬件图如图1。[img]200311121533481726.jpg[/img]
3系统的功能
3.1监控功能
系统在运行过程中,上位机将下位机采集上来的锅炉运行数据和热力站传送上来的运行参数进行实时处理,通过上位机的分析,判断,实现对现场温度、压力、液位、流量、烟气含氧量等工艺过程参数的模拟动态显示,通过下位机的反馈至上位机的信号实现对现场仪表、风机、水泵及上煤系统运行状态的监控。用产地通过上位机手动和自动切换,实现风机,水泵的启、停控制。系统与现场仪表,电气设备配合可实现多变量闭环调节(如送风变频控制、引风机变频控制、给煤机变频控制)和联锁控制(如上煤联锁控制)。
3.2调节控制功能
供暖燃煤锅炉是一种多变量系统,被控量之间的关系耦合程度高,因此本套系统配以优化的控制软件,该套软件以供水温度、烟气氧量、炉膛负压等为控制指标,室外温度为补偿量,同时具有PID控制,通过配置风煤化,前馈系统,来加大或解除给煤调节,送风机调节和引风机调节输出间的前馈联锁,以求取给煤量,送风量和引风量的最佳控制参数,从而实现燃烧的最优控制。考虑到锅炉的此三环节的对象为电机,所以PID手/自动切换时,加有无扰动切换。
3.3报警功能
系统具有故障报警(风机、水泵、上煤系统等的启、停故障等)和超限报警(高、低液位、压力、流量、温度报警及用户指定的其它参数报警)。
3.4上煤联锁功能
本系统可实现手动操作,计算机联动和自动控制。
3.5数据报表记录功能
可根据用户的要求,对热网的供、回水流量、温度、压力、炉膛负压等工艺参数及电机负载情况,报警记录形成报表汇总。
3.6数据查询
计划,打印功能,用户对记录的报表数据,报警数据进行查询、打印。
3.7曲线功能
对用户关心的温度、流量等信号,系统以实时,历史趋势曲线的形式直观地表示出来。
3.8压力棒图功能
系统可根据采集到的数据显示整个热力管网的供水水压图,烟压力和风压图,用以监测网的不利点,便于供热调度。
3.9远程通讯功能
热力站和控制中心通过调制解调器可实现远程数据传输。
3.10冗余功能
为保障系统运行的可靠,计算机测控通讯网采用双冗余光纤环网,当一条网络线出现故障时不会影响系统正常工作。两台上位机同为服务器,测控数据存于S7-400控制器中,使两台上位机数据同步,两台位机为对等关系,当一台主机出现故障时,另一台照样运行,不受影响。下位机控制器也采用双冗余控制器,以保障系统不间断地进行数据的实时采集,对现场仪表和控制器外围供电电源也采用双冗余工业电源,从而实现系统持续,稳定可靠的运行。
3.11密码功能
为防止非专业人员随意改动参数,造成对锅炉操作的误动作,该系统可配制几个操作员密码,操作员可以键入唯一的标识符和口令进入较高级的系统修改参数。
4系统控制框图
系统控制框图如图2。
[img]200311121534429953.jpg[/img]
该系统是控制3台由长春锅炉厂出产的新型速热型DEL14-1625/115/70-AⅡ热水炉,其特点为升温快,反应迅速,其燃烧过程为煤从煤斗落在炉排上,由炉排电机带动燃烧边前进。空气由鼓风机经空气预热器后为一,二次风吹进炉膛,使煤燃烧产生高温烟气,把热量传递给对流管,烟气在经过除尘器由引风抽出排入大气。
5系统的软件设计
5.1模拟量采集和滤波
本系统要采集现场的模拟量(如压力、温度等)以送PLC中处理。考虑到现场工作环境的恶劣,变送器送入AI模块的电流值存在波动和尖峰干扰等情况,因此通过AI模块采集回来的数值不能直接为CPU所用,必须经过滤波处理,滤掉各种波动和干扰等信号,同时考虑到本系统为惯性系数较大的系统,故采用取平均值的办法进行滤波,主程序在每个扫描周期调用一次子程序进行模拟量的采集和滤波处理,处理的结果安全交给主程序使用。本系统采用“AI331”模块,该模块的转换结果为12bit,在模拟量采集的子程序中将每次的采集量累加进入累加器中,当采集次数达到预置值后,将累加器中的值取均值,作为本次采集的最终结果送主程序使用。
5.2实施优化
采样时间(系统)取20S炉膛温度取炉排转过5m内的平均值,根据锅炉的过剩空气系数γ设定氧含量的设定值,根据炉膛温度设定风煤比的上、下限,炉排转速的上限,根据氧含量偏差改变风煤比的设定值,这些值的更新周期为5m。在该系统投运期间操作者还可以改变氧含量的同煤比的设定值,系统在将现有的设定值基础上,向由优化算法得出的设定值以一定的步长接近,而不是直接设为算法得出值。这样可以根据操作者的经验优化以指导,使操作系统有足够的影响力,又使设定值的改变循序渐进,有利于系统稳定运行,软件结构流程图如图3。
[img]200311121535278392.jpg[/img]
6结束语
本系统于2001年6月完成,并已投入使用,由于采用了PLC进行控制,系统功能完善,结构先进合理,能耗小,扩展灵活,便于维护,并且可靠性高,而且还极大地提高了企业的生产效率和经济效益,在大庆油田管理局总结油改煤经验会上,对该套系统给予较高的评价,并且对该系统将做为范例进行推广。
自动化技术与应用