技术中心
 
 

物联网电子产品

   日期:2019-05-20     来源:OFweek    
核心提示:技术无止境!EMI传导的设计理论朋友们受益多多;EMI辐射的问题是难点!再将我总结的EMI基础理论和思路,分享给各位!

重庆站还有很多朋友进行平常工作中的问题想咨询!后面有更多的机会我们一起进行EMC问题的更多的探讨;技术无止境!EMI传导的设计理论朋友们受益多多;EMI辐射的问题是难点!再将我总结的EMI基础理论和思路,分享给各位!

EMI辐射的模型:

骚扰信号源传递到产品中的等效天线模型,然后传递发射出去产生EMI辐射Data!

1)电流不要流过等效天线模型,则没有EMI的辐射问题;

2)电路中导体的所有电位都等电位的时候,就没有电流存在了;

EMI辐射的基本理论:

辐射的一个重要基本概念是:电流导致辐射,而非电压;

1.差模电流的磁场主要集中在差模电流构成的回路面积之内,

而回路面积之外的磁力线会相互抵消;

2.共模电流的磁场,在回路面积之外,

共模电流产生的磁场方向相同,磁场强度反而加强!

问题点:共模电流不能在RF返回路径中进行磁力线的抵消!

同时共模电流的辐射能力,远大于差模电流的辐射能力!

我的理论:

A.所有的等电位的导体都能互连在一起,能连的都连上;不能连的用电容连上,电容连接就是滤波的方法!

B.所有的EMI的辐射问题都是共模辐射(共模电流)!共模的场辐射怎么出来?一定是骚扰信号源传递到了一个等效的天线模型上;天线模型对参考接地板的分布电容是分析问题的关键!骚扰信号源通过分布电容的耦极子天线即环天线路径形成发射超标!

我的EMI辐射的基本思路:

是让辐射源不要流过这个等效的天线模型或者流过的等效的环路路径最短/等效的共模回路路径最小化!(阿杜老师的设计技巧)

1.电磁骚扰的耦合机理

A.基本概念

电磁骚扰传播或耦合,通常分为两大类:即传导骚扰传播和辐射骚扰传播。通

过导体及导线传播的电磁骚扰,叫传导骚扰;通过空间传播的电磁骚扰,叫辐射骚扰。

B.电磁骚扰的常用单位

骚扰的单位通用分贝来表示,分贝的原始定义为两个功率的比:

通常用 dBm 表示功率的单位,dBm 即是功率相对于 1mW 的值:

我们可以通过以下的推导可知电压由分贝表示为

(注意有一个前提条件为 R1=R2):

通常用 dBuV 表示电压的大小,dBuV 即是电压相对于 1uV 的值。

对于辐射骚扰通常用电磁场的大小来度量,其单位是 uV/m。

通常用的单是dBuV/m。

C.传导干扰

1.共阻抗耦合

由两个回路经公共阻抗耦合而产生,干扰量是电流i,或变化的电流 di/dt。

当两个电路的地电流流过一个公共阻抗时,就发生了公共阻抗耦合。我们在放大器中,级与级之间的一种耦合方式是“阻容”耦合方式,这就是一种利用公共阻抗进行信号耦合的应用。在这里,上一级的输出与下一级的输入共用一个阻抗。由于地线就是信号的回流线,因此当两个电路共用一段地线时,彼此也会相互影响。一个电路的地电位会受到另一个电路工作状态的影响,即一个电路的地电位受另一个电路的地电流的调制,另一个电路的信号就耦合到了前一个电路。

对于两个共用电源的电路也存在这个问题。解决的办法是对每个电路分别供电,单点连接或加退耦电路。

2.容性耦合

在干扰源与干扰的对称之间存在着分布电容而产生,干扰量是变化的电场,即变化的电压 du/dt。

注意电路中任意相近的两根电流导线都会存在分布电容耦合:临近PCB走线 及 关键走线&连接线;散热器等等;

3.感性耦合

在干扰源与干扰对称之间存在着互感而产生,干扰量是变化的磁场,即变化的

电流 di/dt。

注意电路中的感性元器件:电感及 变压器器件等等;

当信号沿传输线传播时,信号路径与返回路径之间将产生电场,围绕在信号路径和返回路径周围也有磁场。如图所示横截面上的电力线和磁力线;可见,这些场并不仅仅局限于微带线的正下方,而是会延伸到周围的空间。这些延伸出去的场称为边缘场。

边缘场根据电磁场基本理论,变化的电场产生感应电流,变化的磁场产生感应电压。那么,当一个网络(静态网络)的布线进入另一网络(动态网络)的边缘场时,一旦动态网络上的信号电压和电流发生变化,将会引起边缘场的变化,边缘场的变化又将在静态网络上感应出噪声电压或电流,这就是串扰产生的物理根源。

这种两个网络之间通过场相互作用被称做耦合,耦合又可以分为容性耦合和感性耦合,我们把耦合电容和耦合电感分别称做互容和互感。

互容和互感都对串扰有贡献,但要区别对待。

当返回路径是很宽的均匀平面时,如PCB上的布线,容性耦合和感性耦合大体相当。因此,要精确预测耦合传输线的串扰,两种因素都必须考虑。

如果返回路径不是很宽的均匀平面,比如引线,虽然容性耦合和感性耦合也都存在,但串扰主要来自于互感。这时,如果动态网络上有一个快速变化的电流,如上升、下降沿,将会在静态网络上引起不可忽视的噪声。

4.共阻抗耦合干扰抑制方法

1)让两个电流回路或系统彼此无关。信号相互独立,避免电路的连接,以避免形成电路性耦合。

2)限制耦合阻抗,使耦合阻抗愈低愈好,当耦合阻抗趋于零时,称为电路去耦。为使耦合阻抗小,必须使导线电阻和导线电感都尽可能小。

3)电路去耦:即各个不同的电流回路之间仅在唯一的一点作电的连接,在这一点就不可能流过电路性干扰电流,于是达到电流回路间电路去耦的目的。

4)隔离:电平相差悬殊的相关系统(比如信号传输设备和大功率电气设备之间),常采用隔离技术。

5.容性耦合干扰抑制方法

为了抑制电容性干扰可以采取以下措施:

1)干扰源系统的电气参数应使电压变化幅度和变化率尽可能地小;

2)被干扰系统应尽可能设计成低阻;

3)两个系统的耦合部分的布置应使耦合电容尽量小。例如电线、电缆系统,则应使其间距尽量大,导线短,避免平行走线;

4)可对干扰源的干扰对象进行电气屏蔽,屏蔽的目的在于切断干扰源的导体表面和干扰对象的导体表面之间的电力线通路,使耦合电容变得最小;

6.感性耦合干扰抑制方法

1)干扰源系统的电气参数应使电流变化的幅度和速率尽量小;被干扰系统应该具有高阻抗;

2)减少两个系统的互感,为此让导线尽量短,间距尽量大,避免平行走线,采用双线结构时应缩小电流回路所围成的面积;

3)对于干扰源或干扰对象设置磁屏蔽,以抑制干扰磁场。

4)采用平衡措施,使干扰磁场以及耦合的干扰信号大部分相互抵消。如使被干扰的导线环在干扰场中的放置方式处于切割磁力线最小(环方向与磁力线平行),则耦合的干扰信号最小;另外如将干扰源导线平衡绞合,可将干扰电流产生的磁场相互抵消。

7.辐射骚扰/干扰

A.近场和远场

干扰通过空间传输实质上是干扰源的电磁能量以场的形式向四周空间传播。场

可分为近场和远场。近场又称感应场,远场又称辐射场。判定近场远场的准则

是以离场源的距离 r 也定的。

r>λ/2π 则为远场

r<λ/2π 则为近场

我们常用波阻抗来描述电场和磁场的关系,波阻抗定义为

Zo=E/H

在远场区电场和磁场方向垂直并且都和传播方向垂直称为平面波,电场和磁场

的比值为固定值,为 Zo=120∏=377欧。下图为波阻抗与距离的关系。

B.减少辐射干扰的措施

减小辐射干扰的措施主要有:

1)辐射屏蔽:在干扰源和干扰对象之间插入一金属屏蔽物,以阻挡干扰的传

播。

2)极化隔离:干扰源与干扰对象在布局上采取极化隔离措施。即一个为垂直

极化时,另一个为水平极化,以减小其间的耦合。

3)距离隔离:拉开干扰源与被干扰对象之间的距离,这是由于志在近场区,

场量强度与距离平方或立方成比例,当距离增大时,场衰减很快。

4)吸收涂层法:被干扰对象有时可涂复一层吸收电磁波的材料,以减小干扰。

8.电磁干扰的模式

A.共模干扰与差模干扰

共模干扰:就是线与线同时对地的回路干扰

如上图, UPQ的电压差UCM为共模电压,ICM1&ICM2为共模电流。ICM1&ICM2大小不一定相同,但方向相同!

差模干扰:简单的说是线对线的回路干扰。

如上图,我们可以了解差模的原理图。UDM为差模电压,IDM为差模电流。

IDM大小相同,方向相反。

差模干扰如何影响设备!差模干扰直接作用在产品设备两端,直接影响设备工作,甚至损坏产品设备。(表现为尖峰噪声电压,可使电路系统工作瘫痪!)同时系统内部的骚扰源会产生电磁兼容EMI的问题!!

B.PCB的辐射与线缆的辐射

B.1.PCB辐射

PCB上有许多信号环路,其中有差模电流环也有共模电流环,计算其辐射强

度时,可等效为环天线,辐射强度由下式计算:

B.2.线缆的辐射

计算线缆的辐射强度时,将其等效为单极天线,其辐射强度由下式计算:

从以上两式可以看出线缆的辐射效率远大于 PCB布局布线 的辐射效率!

阿杜老师的实践分析及成本最佳化思路的主体内容如下:

A.确认噪声源

B.了解噪声源的特性

C.确认噪声源的传递路径;

D.分析确认后成本最佳化设计;

从噪声的源头进行设计是我后期推荐大家的策略要点!

更多设计应用实践及技术交流;请关注阿杜老师!

杜佐兵

电磁兼容(EMC)线上&线下高级讲师

杜佐兵老师在电子行业从业近20年,是国家电工委员会高级注册EMC工程师,武汉大学光电工程学院、光电子半导体激光技术专家。目前专注于电子产品的电磁兼容设计、开关电源及LED背光驱动设计。

 
  
  
  
  
 
更多>同类技术
 
全年征稿 / 资讯合作
 
推荐图文
推荐技术
可能喜欢