技术中心
 
 

解决三元电池材料安全性问题的方案

   日期:2016-07-25    
核心提示:从能量密度的角度来说,三元材料比LFP和LMO有绝对的优势,但安全性能却是一直限制其大规模应用的一个难题。容量较大的纯三元电池很难通过针刺和过充等安全性测试,这也是大容量电池中一般都要混合锰酸锂一起使用的原因。

从能量密度的角度来说,三元材料比LFP和LMO有绝对的优势,但安全性能却是一直限制其大规模应用的一个难题。

容量较大的纯三元电池很难通过针刺和过充等安全性测试,这也是大容量电池中一般都要混合锰酸锂一起使用的原因。

从笔者了解到的情况来看,主要有如下几种解决三元安全性问题的方案:

1.选择安全性能最优配比的三元材料

众所周知,三元材料中的镍含量越高,材料的稳定性越差,安全性也就越差,目前安全性最好的主流三元镍钴锰配比为1:1:1,即通常所说的111三元,111的三元之所以稳定性最好,主要因为:

1)镍所占的比例较低(相对于442/523等),材料制备过程中更容易形成完整的层状结构,同时兼顾了能量密度。

2)锰的比例较高(相对于442/523等),锰是三元材料中其结构稳定性的重要元素。

3)镍和锰的比例为1:1,镍和锰同时为稳定性最高的正2价和正4价。(在这里多说一句,111三元是最适合做高电压的三元材料,如果高电压电解液瓶颈突破,其能量密度不会逊色于任何高镍的三元,循环和电极加工性能都要高几个档次。)

综上所述,在大容量纯三元电池中,111三元具有最好的安全性。

2.从三元材料本身进行改善

三元材料本身就是从掺杂中发展出来的新型材料,我们认为如果再在三元中掺杂其他元素,不仅会对其电化学性能产生为止影响,还会对制备工艺提出更多要求,成本的提高同样会限制三元在动力中的应用,而包覆工艺对于产品的一致性会产生影响,所以我们认为在保证产品适合产业化的前提下对于材料的安全性能进行改善才是能够使三元真正应用于动力电池中的最好方法。

所以在这里只说一下我们的改进方案,之前说过很多次了,我们的三元材料是类似钴酸锂的一次颗粒,除了在压实密度和电极加工性能方面有很大的优势之外,对于安全性也有提高,原因如下:

1)微米级的一次颗粒具有更完整的层状结构,层状结构越完整,材料的稳定性就越好,体现为循环性能和安全性能的提高。

2)粒径较大的一次颗粒具有更好的动力学稳定性,之前听说国内某合资公司宣称用日本的纳米级三元材料做出的动力电池安全性能如何如之何,至少在笔者看来,这么宣传的效果是负面的,既然宣传纳米材料就应该重点宣传倍率性能而规避安全性,因为纳米级的材料本身就具有很高的活性,纳米化使材料的稳定性和安全性不同程度的降低,笔者之所以提到微米级,就是为了区别于纳米级。

3)把一次粒径做大的另一个优势就是降低了比表面积,减少了材料因为与电解液的接触造成的副反应对于材料结构的破坏,对于循环和材料稳定性都很有帮助。

尽管如此,我们认为三元材料在电池中的安全性是其本身的性质,就像锰酸锂的高温,即使通过彻底改性,完全消除了锰酸锂的3V平台,形貌控制也做了很多优化,仍然需要电解液和负极的匹配才能完全满足高温性能要求。

下面从不同的角度的说一下如何像做好锰酸锂的高温一样,做好三元在电池中的安全性。

1.降低电池的充电上限电压

目前国内某企业已经很好地解决了35Ah纯三元电池的安全性问题,其充电上限电压为4.1V,这样对于整个电池体系的稳定性都有很好的提高。

2.通过做聚合物纯三元电池来提高电池安全性能

这里说的是真正意义上固体聚合物电解质的锂离子电池,而不是通常意义上的软包电池

3.使用陶瓷隔膜

陶瓷隔膜在隔膜表面涂覆三氧化二铝的一种隔膜,对于三元材料的安全性问题效果很好,但是由于涂覆工艺多变和三氧化二铝种类的繁杂,尽管国内外很多厂家申请了很多相关的专利,但是实用性较好的产品还很少,之前听说国内有一家合资企业通过陶瓷隔膜的使用,很大程度的提高了三元的安全性能。(目前有条件的企业可考虑一种日本新型的无纺布陶瓷隔膜,个人了解具有极高的安全性)

锂电池的每个材料和锂电池本身都是复杂的,所以没有完美的材料,也没有完美的工艺,只有不断优化的匹配和不断沟通的进步。

 
  
  
  
  
 
更多>同类技术
 
全年征稿 / 资讯合作
 
推荐图文
推荐技术
可能喜欢