技术中心
 
 

均衡器如何能解决插入损耗所带来的问题

   日期:2016-01-26    
核心提示:对于速度的渴求始终在增长,传输速率每隔几年就会加倍。这一趋势在诸如计算、SAS和SATA存储方面的PCIe以及云计算中的千兆以太网等很多现代通信系统中很普遍。信息革命对通过传输介质传送数据提出了巨大挑战。目前的传输介质仍然依赖于铜线,数据链路中的信号速率可以达到大于25Gbps,并且端口吞吐量可以大于100Gbps。

对于速度的渴求始终在增长,传输速率每隔几年就会加倍。这一趋势在诸如计算、SAS和SATA存储方面的PCIe以及云计算中的千兆以太网等很多现代通信系统中很普遍。信息革命对通过传输介质传送数据提出了巨大挑战。目前的传输介质仍然依赖于铜线,数据链路中的信号速率可以达到大于25Gbps,并且端口吞吐量可以大于100Gbps。

这些串行数据传输设计使用差分信号的方式,通过被称为差分对的一对铜线来传送数据。A线路和B线路内的信号是等振幅、反相位高速脉冲。差分信号在很多电路上有使用,比如LVDS,CML和PECL等等。

传送一个理想的串行比特流

串行比特流是通过一个差分对传播的差分信号。如图1所示,差分信号的预计到达时间是一样的,这样的话,它们在接收端上保持差分信号的属性(等振幅、反相位)。一个接收器被用来恢复信号,然后正确地采样和恢复数据,从而实现无误差数据传输。

 

图1:理想差分对的电气属性

图1:理想差分对的电气属性

对于差分对的要求

一个良好设计差分对是成功进行高速数据传输的关键因素。根据应用的不同,差分对可以是一对印刷电路板 (PCB) 走线,一对双绞线或一对共用绝缘和屏蔽的并行线(通常称为Twin-axial电缆)。在这一系列中,我将讨论差分对的特点,以及针对高速数据传输的设计问题和解决方案。

让我们研究一下差分对的主要要求:

·A线路和B线路都需要保持相当恒定和相等的特性阻抗,通常称为奇模阻抗,此时两条线路均差分激励。

·差分信号应该在到达目的端时保持差分信号的属性:几乎相等的振幅和相反的相位。

·每条线路的插入损耗应该大致相等。

·每条线路的传播延迟应该大致相等。

总之,我们应该寻求相等并且相当恒定的奇模阻抗,从而最大限度地减少从源端到目的端整条差分对长度上的阻抗波动。我们也应当使A线路与B线路之间的延迟匹配和插入损耗匹配。此外,我们需要确保插入损耗不会太多,这样的话,接收器能够正确地恢复数据。

为了满足上述要求,A线路和B线路应该在它们的物理布局布线中保持高对称。发射器和接收器也应该在它们的A和B线路电路中保持高对称,这样的话,它们在A线路和B线路上的电气负载相等。

在理想情况下,差分对是完全对称的,此时具有无限带宽并且邻近信号之间完全隔离。在现实情况下,差分信号通过集成电路 (IC) 封装、外部器件、不同的PCB结构、连接器和电缆连接子系统进行传播。实现完全对称的差分对是件不太容易的事情。前文谈论了对于差分对的要求。在现实应用中,我们用印刷电路板(PCB)内的铜走线或线缆组装件内的铜质导线来实现差分对。较长的PCB走线或线缆会出现较高的传输损耗,该损耗会劣化信号质量。下面将说明插入损耗如何能影响差分对的信号质量,并解释均衡器如何能消除这种影响。

什么是插入损耗?

传输损耗包含两部分:低频率下的趋肤效应损耗(skin loss)和高频率下的介电损耗。趋肤效应损耗取决于互连部分的截面面积;例如,PCB走线的宽度和金属厚度,或线缆的导线直径。当频率在几百兆赫以下时,趋肤效应损耗是主要传输损耗,并与频率的平方根成比例。当频率较高时,介电损耗则成为主要传输损耗。介电损耗的量取决于电介质的材料属性,且与频率成正比。

插入损耗是一个常见术语,用来描述互连部分的传输损耗。它是只有和没有互连部分的两种情况下负载处电压的比值。网络分析仪能按振幅和相位测量插入损耗。图2展示了FR4板材上两条PCB走线的典型插入损耗:一条走线长5英寸(蓝色),另一条走线长10英寸(红色),但两者具有相等的走线宽度(5 mil)。正如您可从图2中看到的,插入损耗特性与低通滤波器表现出的特性一样,当频率增加时信号衰减量增大。损耗随着PCB走线的长度呈线性增加。

 

图2:FR4 PCB走线的插入损耗

图2:FR4 PCB走线的插入损耗

为什么插入损耗会使信号劣化

数据传输串行比特流中包含不同持续时间的逻辑1和0。在图3中,您可看到发射器波形由较长持续时间(较低频率脉冲)和较短持续时间(较高频率脉冲)的数据位构成。它们的振幅大致相等而且翻转路径几乎相同,因而能产生干净而全开的数据眼。

当信号通过PCB走线传送时,低通滤波器效应会减慢脉冲的翻转时间,持续时间短的脉冲没有足够的时间达到其满振幅。此外,高频率脉冲的衰减量还比低频率脉冲的衰减量大:当到达目的端时,它们的振幅有很大的不同。因为持续时间较长的脉冲和持续时间较短的脉冲具有不同的振幅,所以翻转路径会发生变化,并产生时域抖动。这类抖动具体取决于数据码型,通常被称为码间串扰(ISI)。图3展示了接收器波形和相应眼图,差分对的插入损耗引起的抖动非常显著。

 

图3:由插入损耗引起的信号劣化

图3:由插入损耗引起的信号劣化

如何能解决这种信号劣化问题

上述信号劣化的根本问题是由不等振幅的脉冲(这些脉冲振幅是低通滤波器产生的)导致的。该问题的解决方案是对信号衰减进行抵消,其目标是实现相等的脉冲振幅。均衡器是一种经过专门设计的高通滤波器,其传递函数等于互连部分低通滤波器传递函数的倒数。有许多常见的均衡器实施方案。您可使用高增益的连续时间线性均衡器(CTLE), 高频率下可提供的增益较多,在低频率下可提供的增益较少。或者,您也可使用在低频率下产生衰减的高通滤波器,这种滤波器在许多去加重驱动器设计中通常用作发射端均衡器。另外,还有很多数字实现方案,如重定时器中使用的有限脉冲响应滤波器(FIR)或判决反馈均衡器(DFE)。

图4展示了具有CTLE的DS125BR800A,可消除由互连部分引起的ISI抖动。通过选择与互连部分的插入损耗特性相匹配的适当均衡量,该Repeater可清除ISI抖动并在接收信息的目的端提供干净的数据眼图。

 

图4:CTLE Repeater中继器可消除ISI

图4:CTLE Repeater中继器可消除ISI

 
  
  
  
  
 
更多>同类技术
 
全年征稿 / 资讯合作
 
推荐图文
推荐技术
可能喜欢