PWM型开关稳压电源优点有很多,比如效率高、体积小等等,因此PWM作为电源设备在很多领域都有广泛的应用。但是,开关三极管的工作状态转换持续 期短、频谱甚宽的尖峰干扰是其致命弱点,它不仅影响开关电源本身,而且还会干扰邻近的其它电子设备。开关稳压电源工作时开关三极管和续流二极管(亦可以是 另一个开关三极管)总是交替地导通或者截止,图1中KQ和KD并非是理想器件,两种状态的转换需要一定的时间,这就产生了尖峰干扰。在状态转变过程中,该 导通的开关没有完全导通,而该截止的开关却又没有截止的瞬间,电源到地有直接的通路,产生瞬态电流Is。该电流跟开关三极管导通时的电流Imax及截止时 的电流Icmin的差值、开关KQ和KD同时导通的持续时间等因素有关。由于电路分布参数的影响,在波形上出现振铃振荡。
图1 瞬态电流
晶体管的开关时间跟截止频率成反比。开关时间越短,其速度就越快。同时导通的持续时间取决于KQ和KD所使用的器件的开关速度。用速度不同的开关器件比 较,开关器件的速度越快,同时导通的持续时间越短,尖峰干扰越是宽度窄、幅度大。变压器的漏感越大,电压尖峰越高,射频干扰也就越大。特别是变压器采取屏 蔽后,由于耦合差,漏感也相应大一些。一般说,用环型磁芯绕制的变压器产生的漏感要比E型小些。另外,绕线工艺也很重要,较好的绕线方式是先绕初级总圈数 的一半,再绕次级的全部圈数,最后再绕初级的剩余一半,即次级线圈在初级线圈的中间。这样初级线圈保持有较好的耦合,使变压器有较小的漏感。开关波形 Usr(t)的方正度影响尖峰干扰。矩形波的谐波幅度随频率增加而减小的速率为20dB十倍频程,梯形波则为40dB?十倍频程。有意识地改变矩形波的陡 峭程度和两角的钝化程度可抑制高频分量、减小尖峰干扰。故要合理地选择开关三极管和续流二极管的开关速度。对开关三极管而言,有两种方法可减小尖峰干扰, 即增大Vce的上升时间和减小Ic的下降时间。图2电路中,在确定了KQ之后,可从图3看出,增大KD的开启时间、减小关断时间可以减小尖峰干扰。
图2 开关KD的速度
在开关三极管的CE间,或是在续流二极管的两端并联RC缓冲电路可使尖峰干扰明显减小。图3中,三极管T关断时,集电极电压上升,通过D和R1对C充电, 使其上升速率变缓,选择充电常数CR1的值可以控制上升速率。T导通时,D截止,C对R1和R2放电,限制了导通瞬间的峰值电流。该缓冲电路改变了负载线 的形状,减少了开关三极管的损耗。在续流二极管两端并上RC电路也同样有效。图3中,当用3DD11和2CK120C时,可并0.022LF左右的电容器 (f=2kHz),该电容的容量有一最佳值,它的作用可以从图4看出。图4(a)是不加C的情况,将其在时间轴上放大后为图4(b)。并上缓冲电容后分别 见图4(c)和(d)。
图3
开关稳压电源中开关快速通断,didt很大,在供电系统的漏电感上产生幅度很大的瞬态压降,使输入电压源有一个时间很短的瞬时跌落,破坏电网的正常波形、 形成干扰。输入电源中的干扰也会影响开关稳压电源。输入滤波器具有一定的隔离作用,通常采用P型LC平衡滤波器,对脉动干扰可以衰减20dB,尖峰干扰也 能衰减6dB之多。电感量的计算式:
式中E尖峰是尖峰干扰电压(Vp-p),f尖峰是尖峰干扰的频率(Hz)。还应考虑到流过电感的直流电流值,以免饱和。