技术中心
 
 

TPS92314 THD 设计考虑因素

   日期:2014-02-28    
核心提示:TPS92314器件可安装在初级侧稳压和反向拓扑的LED驱动器中。它是一款离线控制器,经过专门设计,拥有初级侧检测、恒定导通时间和准谐振开关技术。TPS92314应用电路具有高功率因数(PF)、优秀的EMI性能和高系统效率。另外,使用TPS92314器件可实现对低外部组件数目应用解决方案的轻松设计。本文叙述了THD和PF的设计考虑以及设计举例。

1引言

THD(总谐波失真)和PF(功率因数)

如果TPS92314器件工作在自适应算法和单级反向拓扑(例如:PMP4347)的恒定导通时间模式下,则PF校正为自带。

具体条件考虑:AC输入电压(RMS):VAC;线压AC频率:fAC;额定功率:Pin输出电压:Vo;变压器匝数比:n=Np/Ns;

 

 

此处,延迟时间可在图1中定义。

 

 

图1延迟时间定义

 

 

考虑峰值电流模式的实用设计时,K应大于m.

方程式2表明,输入电流非完全的SINE波形,但是它包含了高阶谐波元素。

输入总RMS电流可表示为方程式3:

 

 

然后:

 

 

方程式4

"I1RMS"是输入电流的基础谐波组成。

实际上,输入功率来自于输入线路AC电压乘以第一个谐波RMS电流。方程式5表明了总谐波失真(THD):

 

(方程式5)

 

图2表明了THD如何随不同"K"而变化。

 

 

图2 THD与K(K=Vp/nVo)对比图,图3 THD与m(K=3)对比图

图2表明,增加K会引起THD增加。因此,变压器匝数比n(n=Np/Ns)应高到足以实现更低的K.这样,输入电压越高,THD便越高。

同时,增加m会使THD降低。它意味着,如果在开关关断期间延迟时间增加,则THD降低(参见图3)。

通过增加tDly来增加m是可以的,我们知道:

 

(方程式6)

 

因此,更大的Lp或者Cds可改善THD.例如,Cds增加一个电容便可改善THD.根据TPS92314产品说明书,DLY延迟时间可编程为图4所示。

 


[pagebreak]

 

图4 TPS92314延迟时间定义

3 TPS92314 THD设计考虑设计

举例:90到264VAC通用AC输入,420mA电流的40V/20 W T8 LED驱动器。在初始设计中,初级侧到次级侧变压器匝数比为3:1,而初级侧电感为460 µH。

根据PMP4347参考设计,DLY(引脚5)为6.8k电阻器,表1列出了测试结果:

 

 

表1 PMP4347测试结果

要求小于20%THD时,必须改善表1中的THD。根据前面方程式的计算结果,下列期望结果为:

 

 

表2基于方程式1到5的计算结果

通过在Q1 MOSFET漏极和源极之间添加一个220-pF电容器,我们可以增加延迟时间或者m.同时,我们可以增加TPS92314器件引脚5的延迟设置电阻器,从6.8k增加到7.5k;这样便可根据方程式7进行相关延迟时间设置。

因此,表3列举了7.5k DLY电阻器的测试结果:

 

 

表3改进之后的THD测试结果

图9显示了表1与表3之间的对比情况

 

 

图9 THD结果比较

图9表明,26VAC输入的THD降低了约4%.

将表2计算结果与表3测试结果比较,并且26VAC输入,可知16.7%与19.6%之间仍然存在一定的THD差。

根据前面的讨论和相关方程式,264VAC输入时,可以得到PMP4347小信号电路,如图10所示:

 

 

图10 PMP4347相关小信号电路

图11显示了仿真结果。该图表明,交叉频率为49Hz,并且相位余量为91度。

我们知道,输入2≥x 50 Hz需要更低的阻滞交叉频率。可在TPS92314器件COMP引脚内安装一个更大的电容器。我们可把其值从3.3 µF改为6.9 µF.在更新以后,交叉频率为23 Hz,而相位余量为92度。

因此,电容器改变以后,测试结果出现新的THD:

THD = 17.8% @ Vin = 264 VAC.它比表3中264VAC输入的THD测试结果要低得多。

 

 

图11 3.3-µF COMP电容器的仿真结果

 

 

图12 6.9-µF COMP电容器仿真结果

4结论

本应用说明介绍了对LED驱动器单级反向的分析,以及基于TPS92314器件对LED驱动器THD结果进行改进的解决方案。同时,我们还实现了一种实用的设计。本文详细解释了这些解决方案,并证明了它们的有效性。

 
  
  
  
  
 
更多>同类技术
 
全年征稿 / 资讯合作
 
推荐图文
推荐技术
可能喜欢