技术中心
 
 

变频器和PLC在9米龙门铣床中的应用

   日期:2013-07-22     来源:互联网    

1. 引言

直流电气传动和交流电气传动在19世纪先后诞生。由于直流传动易于实现调压、调磁调速,并有成熟的控制理论和控制系统,可以满足工业生产发展不断提出的宽调速、高精度和快速响应的要求,所以在20世纪的大部分年代里,高性能的调速系统都采用直流调速传动,而约占电气传动总容量80%的不变速电气传动则采用交流电气传动,这种分工在一段时间里已成为举世公认的格局。交流调速传动的控制原理很早被确立,异步电机降电压调速,绕线转子异步电机转子串电阻调速等虽已实用化,但在调速范围、稳定性、可靠性和维修性等方面有些不足,应用范围受到限制。1965年以后,由于电力电子技术的不断发展和进步,伴随着新的控制理论的提出与完善,使交流调速传动,尤其是性能优异的变频调速传动得到飞速的发展。绕线转子异步电机的串级调速,采用变频器的无换向器电机调速,笼型异步电机的变频调速等依次实用化,完成了以变频调速为主流的交流调速传动的基础。现代矢量技术的应用,使交流调速传动也具备了直流调速传动的高性能。直流电机的换向器是它的主要薄弱环节,它使直流电机的单机容量、过载能力、最高电压和最高转速等重要技术指标受到限制,也给直流电机的制造和维护带来了不少麻烦,这些缺点,在很大程度上限制了直流电机的应用。交流变频调速传动中的笼型异步电机结构简单、坚固耐用、运行可靠、维护方便、转动惯量小、动态性能好,其单机容量、电压等级和最高转速等技术指标,均优于直流电机。目前,高性能的交流变频调速系统已完全可以和直流调速系统相媲美,而且可以在直流电机无法应用的场合使用。直流调速传动一统天下的旧格局已被打破,用交流调速传动取代直流调速传动已成为可能。

2. 龙门铣床直流调速系统进行改造的必要性

我厂用于道岔加工的龙门铣床调速系统采用三相半控桥不可逆直流拖动,分为工作台、左主轴和右主轴三个进给方向。这台机床的电控系统运行已有十余年,直流调速插板已严重老化,加之插板之间的连线多,由导线虚接造成故障日渐增多,维修成本不断上升。此台龙门铣床的调速系统急待改造。

近年来,交流变频调速传动的发展日新月异,它的优异的调速性能已能取代传统的直流调速系统。而且,随着电子元器件的发展,变频器的价格不断降低,经济性价比,不断上升,也给它的应用提供了日益广阔的市场。我们详细分析比较了直流调速系统与交流调速系统的优缺点,采用变频器改造原调速系统,可带来以下好处:

2.1 简化控制线路

变频器的使用极为方便,可通过其外围的少数几个控制端子进行全范围控制。变频器内部有完善的保护措施,无须在其外围线路中设计各种保护电路。由于变频器的正反向运行是通过控制端子来改变逆变器的输出相位来实现,因此可以比原直流调速系统少两个大型直流接触器。采用具有无速度传感器的矢量控制变频器后,还可以去掉用作转速反馈的速度传感器,使控制线路大为简化。

2.2 可以采用标准笼型异步电机

采用笼型异步电机可以充分发挥它坚固耐用、结构简单、运行可靠、维护方便、价格低廉的优势,避免直流电机定期更换、维护电刷和换向器的麻烦。

2.3 调试方便

变频器的各种运行参数调试通过智能化键盘和显示器来完成,设置方便,更改灵活,调试时间短。传统的直流调速系统调试涉及到触发脉冲相位调整,放大板PI整定,转速负反馈调试等多项参数的综合统调,调试难度大,时间长,且不易达到最优控制。

3. 变频器的选择

变频器的正确选用对于机械设备电控系统的正常运行是至关重要的。选择变频器,首先要按照机械设备的类型、负载转矩特性、调速范围、静态速度精度、起动转矩的要求,然后决定选用何种控制方式的变频器最合适。所谓合适是在满足机械设备的实际工艺生产要求和使用场合的前提下,实现变频器应用的最佳性价比。

3.1 机械设备的负载转矩特性

人们在实践中常将生产机械根据负载转矩特性的不同,分为三大类型:恒转矩负载、恒功率负载和流体类负载。

3.1.1恒转矩负载

在这类负载中,负载转矩TL与转速n无关,任何转速下TL总保持恒定或基本恒定,负载功率则随着负载速度的增高而线形增加。传送带、搅拌机、挤压机和机械设备的进给机构等摩擦类负载以及起重机、提升机、电梯等重力负载,都属于恒转矩负载。

变频器拖动恒转矩性质的负载时,低速时的输出转矩要足够大,并且要有足够的过载能力。如果需要在低速下长时稳速运行,应该考虑标准笼型异步电动机的散热能力,避免电动机温升过高。

3.1.2恒功率负载

这类负载的特点是需求转矩TL与转速n大体成反比,但其乘积即功率却近似保持不变。金属切削机床的主轴和轧机、造纸机、薄膜生产线中的卷取机、开卷机等,都属于恒功率负载。

负载的恒功率性质应该是就一定的速度变化范围而言的。当速度很低时,受机械强度的限制,TL不可能无限增大,在低速下转变为恒转矩性质。负载的恒功率区和恒转矩区对传动方案的选择有很大的影响。电动机在恒磁通调速时,最大允许输出转矩不变,属于恒转矩调速;而在弱磁调速时,最大允许输出转矩与速度成反比,属于恒功率调速。如果电动机的恒转矩和恒功率调速的范围与负载的恒转矩和恒功率范围相一致时,即所谓“匹配”的情况下,电动机的容量和变频器的容量均最小。

3.1.3流体类负载

这类负载的转矩与转速的二次方成正比,功率与转速的三次方成正比。各种风机、水泵和油泵,都属于典型的流体类负载。

流体类负载通过变频器调速来调节风量、流量,可以大幅度节约电能。由于流体类负载在高速时的需求功率增长过快,与负载转速的三次方成正比,所以不应使这类负载超工频运行。

3.2变频器的控制方式

现在市场上出售的变频器种类繁多,功能也日益强大,变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。下表综述了近年来各种变频器控制方式的性能特点。

 

 

 

 

综上所述,异步电动机变频控制选用不同的控制方法,就可得到不同性能特点的调速特性。

同时,调频控制根据不同的控制方法,就可得到不同类型的机械特性。基频以下恒磁通变频调速控制方式,其机械特性属于恒转矩调速方式,它适用于负载转矩与转速无关,任何转速下负载转矩总保持恒定或基本恒定,负载功率则随着负载速度的增高而线形增加的应用场合,例如传送带、搅拌机、挤压机和机械设备的进给机构等摩擦类负载以及起重机、提升机、电梯等重力负载等。基频以上弱磁变频调速控制方式,其机械特性属于恒功率调速方式,适用于负载随转速升高而减小的应用场合,例如机床主轴的传动、卷扬机等。

3.3 根据负载特性选取适当控制方式的变频器

我们这次改造的对象是9米龙门铣床的进给机构,工作台进给和左、右主轴进给机构均属于恒转矩负载,它的转矩速度特性如图1所示。原来的直流调速系统的调速范围D=50,要达到50:1的调速比就必须选用带有矢量控制功能的高性能变频器。

 

 

异步电机的矢量控制就是象它励直流电机控制一样,将电机定子的输入电流分解成产生磁通的电流分量和产生转矩的电流分量,分别进行独立瞬时的控制,同时将二者合成后的定子电流供给电机。原理上,因为以矢量控制决定变频器的输出频率,所以需要检测电机的转速,这是转差型矢量控制。随着控制理论得发展和数字信号处理器(DSP)的应用,不用速度传感器“只用异步电机三根线控制”即无速度传感器矢量控制也实现了实用化。目前,市场上出售的无速度传感器矢量控制变频器的调速范围可达到100:1。无速度传感器矢量控制是通过转矩电流的变化量的积分运算来推算电机的转速,势必会带来推算的误差。如果要求进一步提高调速范围和精度,就要选用带速度传感器的矢量控制。目前,市场上出售的带速度传感器矢量控制变频器的调速范围可达1000:1。

 
  
  
  
  
 
更多>同类技术
 
全年征稿 / 资讯合作
 
推荐图文
推荐技术
可能喜欢